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Abstract

Promoting electric vehicles (EVs) has been a major goal of the US govern-
ment to combat climate change, but the role that the EV fast charging network
plays is relatively understudied. In this paper, I investigate Tesla’s investment in
its network of fast charging stations (called Supercharging stations) as a tool to
increase the attractiveness of its EVs and how that incentive interacts with EV
purchase subsidies. I develop a structural model that consists of three compo-
nents: consumer demand for new vehicles, pricing competition among automak-
ers, and Tesla’s investment in its Supercharging network. The demand model
incorporates consumer heterogeneity reflecting fast charging accessibility in their
home counties and along their travel routes. Tesla’s investment decision features
various locations in communities and along highway corridors, and is rational-
ized by the profitability of its vehicle sales. I follow the revealed preference
approach used by Holmes (2011) and Houde et al. (forthcoming) to set-identify
investment cost parameters. The results show that consumers value access to
in-community and along-highway fast charging almost equally, and the presence
of either is equivalent to a 4 percent drop in vehicle prices. The counterfactual
analysis shows that EV purchase subsidies have an expansionary effect on the
Supercharging network. The effect is larger for in-community locations and de-
pends on the demographics of the location. This paper also shows that ignoring
the effect of the Supercharging network on demand or Tesla’s adjustments to its
network underestimates the positive effect of EV purchase subsidies on consumer
welfare and emission reductions.
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1. Introduction

The US government has implemented numerous policies to combat climate change, and a

main focus has been on vehicle electrification, since the transportation sector is the largest

contributor to greenhouse gas emissions in the US.1 The Biden Administration has set a

target that 50% of all new vehicles sold in the United States should be electric vehicles

(EVs) by 2030, and to reach that goal, the federal government extends the $7,500 purchase

subsidy for new EVs to 2032. Increasing attention has also been paid to building a reliable

national network of fast charging, especially along major highway corridors, as evidenced by

the $5 billion allocated to this purpose by the Bipartisan Infrastructure Law.

In this paper, I study Tesla’s investment decisions in its network of fast charging stations

(also known as Supercharging stations). Fast charging is a relatively understudied area

in the economics literature despite a rapidly emerging body of work on EVs in general.

This paper connects consumer demand for vehicles with Tesla’s incentives to invest in its

Supercharging network. In particular, consumers value the EV fast charging network when

making EV purchase decisions, and Tesla’s incentives to invest depend on the profitability

of its vehicle sales. This paper also investigates the interactions between Tesla’s investments

and EV purchase subsidies. Though purchase subsidies do not directly target charging

infrastructure, they might have an indirect effect on Supercharging investments through

changes in demand and profitability. An important empirical question to ask is whether

EV purchase subsidies are complements or substitutes with Supercharging investments, and

whether the adjustments in the Supercharging network amplify or dampen the impacts

of the subsidies. I show that the Supercharging network and EV purchase subsidies are

complements, i.e. EV purchase subsidies expand consumer demand for EVs and have an

indirect positive effect on Tesla’s investments in Supercharging. This channel amplifies the

positive effects of EV purchase subsidies on consumer welfare and emission reductions.

I model households’ demand for individual conventional and green vehicles using a ran-

1https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions.
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dom coefficient logit framework, while incorporating a rich structure on the tastes for the fast

charging network. First, consumers value the network in two use cases: they value stations

in their communities for charging during daily activities, and along the highway system for

long-distance trips. Second, the values they attach to the highway charging network are

idiosyncratic and depend on their long-distance travel patterns. To capture consumer het-

erogeneity in the use of the highway charging network, I utilize an extensive dataset on the

simulated US household long-distance trips, whose routes are obtained from OpenStreetMap.

At the beginning of each year, automakers observe the current status of the fast charging

network, the purchase subsidies available for each EV, the characteristics of all vehicles and

their marginal costs. They engage in an oligopolistic Bertrand competition by setting the

national prices of their vehicles to maximize the profits from car sales.

In modeling Tesla’s investment decision, I use geographic details at a very fine level of

highway and county locations, including more than 100 segments of the Primary Interstate

Highways and more than 3000 counties in the contiguous US. Tesla chooses where to build

the Supercharging stations by maximizing the present discounted value of all automotive

profit streams net of the Supercharging investment cost. The investment cost is modeled

with several components. The cost of covering a county or a highway segment depends on

the size of the station(s), the estimated lifetime rent cost, and in the case of a highway

segment, the number of stations on the segment.

I estimate the demand and pricing components of the model jointly using the Generalized

Method of Moments. In addition to demand and marginal cost instruments, I include a

micro-moment that matches the observed and model predicted penetrations of each EV

model at the county level2 to increase the identifying power for the preference parameters

on the fast charging network.

I estimate the investment model using the revealed preference approach, following Holmes

(2011) and Houde et al. (forthcoming). Specifically, I consider alternative investment plans

2The markets are defined at the state-year level in the demand part, because that is also the level of
the market share data.
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that deviate from the actual plan by swapping the coverage years of two locations while

keeping the coverage years of other locations unchanged. The alternative plans are the ones

Tesla could have chosen but decided not to, which implies that the value of the actual plan

should be weakly higher than the alternative ones. The value comparisons are used to form

moment inequalities, which give rise to bounds for the investment cost parameters.

The estimation results confirm that the accessibility of the fast charging network has

a significantly positive effect on EV purchases, and both the stations in communities and

stations along highway corridors are valued. In particular, the coefficients on the local fast

charging and the highway fast charging are roughly equal, i.e. building a fast charging

station in a consumer’s local area has a similar effect to covering highways on all of her long-

distance travel routes. I find that covering the local community or covering all long-distance

travel routes of a consumer is equivalent to a 4 percent drop in vehicle prices for an average

consumer, or $2,256, evaluated at the average effective price of a Tesla vehicle.

The estimated set of the investment cost parameters implies that the median cost of a

in-community Supercharging station is between $4.1 million and $6 million, and the median

cost of an along-highway Supercharging station is between $2.03 million and $2.5 million.

These estimates are the present discounted value of all cost streams associated with a sta-

tion, including the initial setup cost and all future operating and maintenance costs, and

are consistent with engineering estimates. Comparing this cost estimate with the engineer-

ing estimate of the initial setup cost suggests that the future costs constitute a significant

portion of the total cost (around 80%), highlighting that the future costs are taken into ac-

count when Tesla makes its investment decisions. The county populations and the highway

traffic volumes also increase the cost for in-community stations and along-highway stations

respectively, indicating stations with more chargers are required for these locations and the

cost increases accordingly.

I use the estimated model to evaluate how the roll-out of the Supercharging network

interacts with EV purchase subsidies. I use a new method to calculate an approximation to
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the optimal network in a dynamic environment, in comparison to the existing literature which

finds an approximately optimal network in the static setting. I find that increases in the

purchase subsidies could stimulate Tesla’s investment in fast charging both in communities

and along highway corridors, which is a result of the complementarity between lower effective

prices and more accessible EV fast charging in increasing demand for EVs. The expansionary

effects are larger for communities and in areas with a higher median income and a larger

pre-period EV adoption. Moreover, through the expansionary effects on the fast charging

network, the purchase subsidies achieve additional consumer welfare gains and additional

emission reductions. For example, with a 20% increase3 in the purchase subsidies for Tesla

vehicles from 2017 to 2020, the estimated additional consumer welfare gain due to network

adjustments is $93 million and the estimated additional carbon dioxide emission reduction

due to network adjustments is 270 thousand tons, or $21 million worth of social value. If

the adjustments in the Supercharging network are ignored, the positive effects of the EV

purchase subsidy will be underestimated.

This paper relates to three strands of literature. First, there is a fast-growing literature

on the EV market and the effects of government policies (Li (2019), Li et al. (2017), Springel

(2021), Sinyashin (2021), Holland et al. (2016), DeShazo et al. (2017) and Xing et al. (2021)).

I contribute to this literature by providing a rich and detailed model of EV fast charging

which incorporates consumer heterogeneity in valuing the fast charging network and Tesla’s

investment decision in a high-dimensional temporal and spatial space. To my knowledge,

this paper is also the first to evaluate the impacts of EV purchase subsidies taking into

account their impacts on the Supercharging network.

Second, this paper also contributes to the economy of density literature (Holmes (2011)

and Houde et al. (forthcoming)). A main difficulty in this literature is that solving for the

exact solution to the optimal network is impossible due to the fine level of geographic details,

which poses a challenge in counterfactual analyses. I employ a similar modeling approach

3The average purchase subsidy Tesla vehicles received from 2017 to 2020 is $5,193. The 20% increase
in the subsidies amounts to $1,039.
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and partial identification strategy on Tesla’s investment problem, and apply a new method

to solve for an approximate solution in the dynamic setting.

Finally, this paper relates to the literature on the endogenous product positioning (Fan

(2013), Sweeting (2013), Wollmann (2018), Eizenberg (2014) and Crawford et al. (2015)) by

modeling the dynamic choice of Tesla’s Supercharging network and recovering the associated

investment cost. The investment in the Supercharging network can be viewed as a tool Tesla

uses to improve its product positioning. This paper also speaks to how government policies

can indirectly affect firms’ choices of product positioning.

The rest of this paper is organized as follows. Section 2 gives an overview of the EV

industry, introduces the different types of EVs and EV charging, and summarizes the relevant

government policies. Section 3 introduces the datasets. Section 4 lays out the model. Section

5 and Section 6 describe the identification and estimation strategies for the demand and

pricing model, and Tesla’s investment model respectively. The subsequent section presents

the estimation results. The penultimate section conducts the counterfactual analysis and

the final section concludes.

2. Institutional details

2.1 Overview of the EV market

Since the introduction of Nissan LEAF and Chevrolet Volt in December 2010, the US EV

market has grown exponentially in the last decade. In 2012, around 100,000 vehicles with

an electric battery were sold in contiguous US and this number increased five-fold, reaching

508,174 units in 2020. Among them, plug-in hybrid EVs (PHEVs), which have both a

rechargeable battery pack and a gasoline tank as a backup, made up for 90% of EV sales in

2012 but only half the sales by 2020. The rising EV type has been the battery EVs (BEVs),

running solely on electricity stored in their battery packs, whose sales soared by almost 20

times, from 13,021 units in 2012 to 250,252 units in 2020. Figure 1 shows the growth of the
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EV market from 2012-2020.

Figure 1: EV Market Growth, 2012-2020

(a) EV Sales (b) EV Shares Among Automobile Sales

Tesla is a major BEV manufacturer in the US. It introduced the flagship sedan Model S in

mid 2012 and subsequently the SUV Model X in 2015, and strengthened its leading position

in the BEV market by bringing up its most popular Model 3, selling an unprecedented

358,107 units in 3.5 years since its first delivery in mid 2017. This number is more than the

sales of all non-Tesla BEVs from 2012-2020 combined. The four Tesla models (Model 3, S,

X and Y) accounted for two-thirds of total BEV sales. Other major BEV models include

Nissan LEAF, Chevrolet Bolt, Fiat 500e, Volkswagen e-Golf, among others. Table 1 shows

the best-selling BEV models and their sales numbers.

Comparing to the US automobile industry as a whole, EVs accounted for 3.8% of all

light-duty passenger cars and trucks sold in 2020. This share may still seem small, but this

cannot mask the importance of EVs to the US economy. Industry experts project the market

share of EVs will reach 30% by 2030, and 45% by 2035.4 The federal and local governments

have been playing a significant role in this issue. For example, the Biden-Harris Electric

Vehicle Charging Action plan has set a target of 50% of electric vehicle sale shares in the

US by 2030.5 California, the largest state in EV adoption, has an objective to achieve five

4https://www.statista.com/statistics/744946/us-electric-vehicle-market-growth/ and
https://evadoption.com/ev-sales/ev-sales-forecasts/.

5https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-
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Table 1: Battery Electric Vehicle Sales

Make Model Sales Share of total BEV sales First year of sales

Tesla Model 3 358,107 34.5% 2017

Tesla Model S 168,832 16.3% 2012

Nissan LEAF 136,682 13.2% 2011

Tesla Model X 91,005 8.8% 2015

Chevrolet Bolt 77,222 7.4% 2016

Tesla Model Y 68,026 6.6% 2020

Fiat 500e 26,031 2.5% 2013

Volkswagen e-Golf 18,860 1.8% 2014

BMW i3 12,076 1.2% 2014

Audi e-tron 11,888 1.1% 2019

Other BEV models 69,391 6.7% NA

million zero-emission vehicles (ZEVs) on the road by 2030 and requires that all new cars and

passenger trucks sold in California be ZEVs by 2035.6 Washington state has set a target

that all vehicles of model year 2030 or later sold, purchased or registered in the state be

electric, making it the state with the earliest all-electric target in the nation.7

2.2 Batteries and charging

Battery range is the distance a fully charged EV can travel. It varies with EV types, models

and over time. PHEVs tend to have a smaller battery range, since they can run on their

internal combustion engines when the battery is depleted. The median battery range of a

PHEV is about 20 miles, making it best for daily commute and short trips. BEVs tend to

have larger batteries, with a median of 111 miles. The battery capacities also vary greatly

across BEV models and over time. Tesla stands out for its battery technology and long-range

vehicles. Its 2020 Model X can travel 351 miles on a single charge, and all of Teslas models

harris-electric-vehicle-charging-action-plan/.
6https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/transportation-

electrification.
7https://electrek.co/2022/03/25/washington-passes-bill-targeting-all-electric-car-sales-by-2030-for-real-

this-time/.
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can surpass 300 miles of range with the basic version or the long-range version. On the other

hand, models like Fiat 500e, Chevrolet Spark EV and Honda Fit EV can only go less than

100 miles.

EV ranges have also been rising steadily over time. Figure 2 plots the average EV range

from 2012 to 2020. The average BEV range increased from 136 miles in 2012, to 290 miles in

2020 for Tesla models, and from 89 miles in 2012, to 159 miles in 2020 for non-Tesla models.

Behind this increase is the improvement in battery technologies and declining battery costs.

The estimated lithium-ion battery pack cost per kilowatt-hour was $712 in 2012, and dropped

to $137 in 2020.8 This decline was significant, since battery costs accounted for more than

30% of the selling price of BEVs on average.9

Figure 2: Average EV Battery Range (Miles), 2012-2020

One of oft-cited reasons why people delay buying EVs, especially in earlier years, is that

they worry the battery will be depleted before reaching the destination or a charging station,

referred to as the “range anxiety”. The improvement in battery ranges has alleviated this

concern, together with the development of a robust and reliable charging network. There

8https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/.
9https://www.instituteforenergyresearch.org/renewable/electric-vehicle-battery-costs-soar/ and own

calculation.
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are three types of EV charging, level 1, level 2, and direct current fast charging (DC fast

charging, or DCFC). Level 1 charging is the slowest - it can be used with any standard 120-

volt outlet, replenishing between 3 and 5 miles of range per hour. Level 1 charging works

better for PHEVs than for BEVs because of its slow speed and is mostly seen in residential

areas. Level 2 charging adds an average of 25 miles of range per hour and requires installing

a charger and plugging into a 240-volt outlet. It can fully charge an average BEV in about

8 hours, making it best for overnight charging. It can be seen at a wide variety of locations,

including homes, workplaces, and public areas like stores and restaurants. All PHEVs and

BEVs except Tesla use the same J1772 connector for Level 2 charging, and all Tesla cars

include an adaptor with the purchase that allows Tesla models to charge using the J1772

connector. In this paper, I assume all EV models can charge at any level 2 charger universally.

DC fast charging is the fastest type of charging, as its name stands. It can provide up to

250 miles of range per hour and can typically charge up to 80% in about 30 minutes. Fast

charging is only available on some BEVs, and there are three incompatible standards, Tesla,

Combined Charging System (CCS), and CHAdeMO. The Tesla DC fast charging stations,

called Tesla Supercharging stations or Superchargers, can only be used for Tesla models.10

CCS is mostly used among European and American automakers, including BMW, Ford, GM

and Volkswagen. CHAdeMO is commonly seen in Japanese companies, such as Nissan and

Mitsubishi.11 Most CCS DCFC stations have CHAdeMO DCFC chargers available, and vice

versa. However, Tesla Supercharging stations do not normally have the other two standards

available. Figure 3 shows the number of DCFC stations in the US by standard.

The main use cases of DC fast charging include topping off the battery for intra-urban

travelers during the day and enabling inter-city long-distance travel through quick recharger.

10Tesla Superchargers use the CCS standard in Europe, and allows non-Tesla BEVs to use in selected
countries. Currently, there are no reliable and widely available adaptors among the three fast charging
standards in the US.

11The BEV models with DC fast charging are: Tesla Model 3, Tesla Model S, Tesla Model X, Tesla
Model Y (Tesla standard); Audi e-tron, BMW i3, Chevrolet Bolt, Chevrolet Spark EV, Ford Focus Elec-
tric, Honda Clarity EV, Hyundai Ioniq EV, Hyundai Kona Electric, Jaguar I-PACE, Kia Niro EV, Kia
Soul EV (since 2019), MINI Cooper Electric, Porsche Taycan, Volkswagen e-Golf (CCS standard); Kia
Soul EV (before 2019), Mitsubishi i-MiEV and Nissan LEAF (CHAdeMO standard).
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Figure 3: Number of DCFC Stations in the US, 2012-2020

These correspond to the two types of locations where DCFC stations are usually built - in

communities and along highway corridors. Since more miles are driven in a long-distance trip

than a daily intra-urban trip, constructing a reliable DCFC network along major highways

has become a recent emphasis by policymakers who try to reduce emissions and combat

climate change. Programs exist in various states allowing the costs of establishing highway

DCFC stations to be fully or partially subsidized.12 Tesla moved first in deploying a fast

charging network along the highway network - in fact, the first coast-to-coast trip across

the US was completed by a Tesla Model S relying only on the Supercharging network in

January 2014.13 Figure 4 shows the maps of Tesla Supercharging stations and non-Tesla

DCFC stations in 2014, 2017 and 2020.

While Tesla Supercharging stations are solely built by the Tesla company, CCS and

CHAdeMO DCFC stations are built by various entities. The ChargePoint Network accounts

for around 30% of non-Tesla DCFC stations, which operates in a decentralized way, like the

12Based on my search on state level charging infrastructure subsidies, most states targeting DCFC sta-
tions (rather than EV charging stations in general) have some form of requirement that the DCFC sta-
tions need to be close to major highways.

13https://www.tesla.com/blog/first-across-us-supercharger.
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Figure 4: Tesla Supercharging stations and Non-Tesla DCFC stations in the US

(a) 2014

(b) 2017

(c) 2020
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“Airbnb” of DCFC charging. Anyone can host a ChargePoint DCFC station at their own

preferred location, set their own charging prices, and enjoy the driver base and maintenance

services ChargePoint provides. Following the ChargePoint Network is non-networked DCFC

stations, accounting for another 25% of non-Tesla DCFC stations. The third place is Electrify

America, which is a not-for-profit organization funded by the Volkswagen Diesel Emissions

Environmental Mitigation Trusts,14 owning 22% of non-Tesla DCFC stations. The remaining

22% are owned by various charging station companies including eVgo, Blink, Greenlots etc,

each accounted for less than 10%. Given the numerous participants in building non-Tesla

DCFC stations and the not-for-profit nature of some participant, non-Tesla DCFC stations

will be thought of as competitively built in this paper.

2.3 Government involvements

Policymakers realized very early that the EV market is featured by the “chicken and egg”

problem. That is, consumers are only willing to buy EVs if the charging infrastructure is well

developed, and the charging stations are only profitable when EVs are widely adopted. To

solve this dilemma and to speed up EV penetration, federal and state governments have been

very active in this domain and allocated resources on various fronts. On the EV purchase

side, the federal government offered up to $7,500 of federal income tax credits for new BEV

and PHEV purchase since 2010;15 some state governments16 and utility companies provide

purchase credits as well.

On the charging infrastructure side, state governments17 and utility companies have re-

bate programs of various generosities that help investors recoup the equipment costs. More

14In 2016, Volkswagen entered into a settlement to partially resolve alleged Clean Air Act violations
by cheating federal emission tests, and agreed to spend $4.7 billion to mitigate pollution and make invest-
ments to support zero-emission vehicle technology, including building a network of fast charging stations.

15The credit phases out when a manufacturer sells 200,000 qualifying vehicles, and Tesla and GM
reached the limit in 2020.

16California, Colorado, Connecticut, Delaware, Louisiana, Maine, Massachusetts, New York, Oregon,
Pennsylvania, and Texas in my data period (2012-2020).

17California, Colorado, District of Columbia, Idaho, Maryland, New Mexico, Oklahoma, Pennsylvania,
Rhode Island, Vermont and Washington in my data period (2012-2020).
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recently, the Biden-Harris Administration announced in early 2022 that the National Electric

Vehicle Infrastructure Formula Program will make available nearly $5 billion to help states

build out a network of EV charging stations along designated highway corridors, particularly

along the Interstate Highway System.18 Monetary supports on charging infrastructure usu-

ally exclude Tesla-owned stations, since Tesla stations are proprietary assets of the company

and can only be enjoyed by Tesla drivers.

On the manufacturing side, California initiated the ZEV mandate, which requires a

growing proportion of the vehicles sold by large automakers be zero-emission.19 Based on

the total sales volume of fossil fuel vehicles in the previous year, each automaker is required

to reach a credit each year by selling ZEVs, and the number of credits a qualifying clean

vehicle earns depends on the type of ZEV and its battery range.20 These credits can be

stored for future use or traded among manufacturers. Tesla is the largest seller of these

credits, because all of its sales are electric which earn credits but consume none. By 2020,

9 other states have opted into the ZEV program, including Connecticut, Maine, Maryland,

Massachusetts, New Jersey, New York, Oregon, Rhode Island and Vermont. In this paper,

the participation in this program is thought of as lowering the marginal costs of production

of EVs (the extent depends on the number of credits an EV earns) but having no direct

impacts on consumers (consumers will be indirectly affected through vehicle prices).

3. Data

My empirical analysis combines multiple data sources for estimation, including information

on vehicle sales, vehicle characteristics, government subsidies on EV purchase and charging

infrastructure, gasoline and electricity prices, EV charging stations, US Primary Interstate

Highways, US household travel patterns and travel routes, and US household demographics.

18https://highways.dot.gov/newsroom/president-biden-usdot-and-usdoe-announce-5-billion-over-five-
years-national-ev-charging.

19The vast majority of zero-emission vehicles sold are electric.
20For example, BEVs earn more credits than PHEVs.
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The US vehicle annual sales data is obtained from IHS Markit (formerly R.L.Polk),

which accurately reflects new car registrations at each state’s Department of Motor Vehicles.

Each model is defined as a make-model-fuel type combination,21 and the data contains

sales numbers for passenger vehicle and light duty truck models. The panel includes 49

geographic areas (48 contiguous US states and Washington D.C.), and 9 years (2012-2020),

totaling 441 markets. Consumers’ choice sets are assumed to be all models with positive

sales in a market, and the sizes of the choice sets range from 204 to 285, with an average of

252 models available in a market. To improve the granularity of the sales data, I also obtain

the county-year level sales of each EV model for California and New York State which are

published by the California Energy Commission22 and New York State Energy Research and

Development Authority23 respectively. They are used to form a micro-moment which is key

to identifying the preference parameters on DCFC infrastructure (see Section 5).

The geographic datasets (including maps of US Primary Interstates, EV charging station

locations, and household travel patterns) warrant a more detailed discussion. There are 70

Primary Interstate Highways in the Interstate Highway System, whose maps are obtained

from the Wikimedia Commons. The lengths of the Primary Interstates range from 12 miles

to 3,020 miles, so I divide Interstates whose length is greater than 500 miles into segments,

taking the end points of the segments to be intersection points with other Primary Interstates.

Each segment is taken to be around 300 miles, but the length varies depending on where the

intersections points are. This results in 112 Primary Interstate segments, with an average

length of 352 miles.

The exact locations and open dates of all public EV charging stations (level 2 and DCFC)

are accessed from the US Department of Energy Alternative Fuels Data Center. I define a

DCFC station to be along-highway if the straight-line distance between the station and the

21The fuel types include BEV, PHEV, hybrid, gasoline, flex-fuel and diesel. For example, the gasoline
version and electric version of Ford Focus are treated as two different models.

22https://www.energy.ca.gov/files/zev-and-infrastructure-stats-data.
23https://www.nyserda.ny.gov/All-Programs/chargeny/support-electric/data-on-electric-vehicles-and-

charging-stations.
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highway segment is at most 3 miles, and the station is called a community station otherwise.

I define a highway segment to be covered by DCFC stations of some standard if there is at

least one along-highway DCFC station of that standard every 100 miles. A county is defined

as covered by DCFC stations of some standard if there is at least one community station

of that standard in the county. These definitions are used on the demand side to model

consumers’ tastes for fast charging.

Household travel patterns are obtained from the Long-Distance Passenger Travel Demand

Modeling Framework (rJourney) (Outwater et al. (2018)), which is a project sponsored by

the Federal Highway Administration. It estimates a model of demand for long-distance trips

using travel surveys in California, New York, Ohio, and Wisconsin and various data sources,

and uses the model estimates to simulate single-day or multi-day business or leisure trips that

are at least 100 miles for all US households. Existing papers on EV travel usually use the

National Household Travel Survey (NHTS) to simulate travel behaviors (Sinyashin (2021)).

I choose to use rJourney instead, because each NHTS respondent records all of their trips

on a single day, which covers mostly commute trips and shorter trips around where most of

their activities take place. The number of long-distance trips in the dataset is small, and if

a respondent happens to be on a multi-day trip during the recording day, they will only log

their driving pattern on that day, not on days before or after. The rJourney dataset focuses

on long-distance trips and covers both single-day and multi-day trips, and thus is more

suitable for the purpose of this paper. To obtain the travel route of each origin-destination

pair, I use the OpenStreetMap to obtain whether and which Interstate segments are used

for each route.

Model-year level vehicle characteristics are obtained from the Environmental Protection

Agency (electricity range and fuel economy) and www.teoalida.com/ (MSRP, horsepower,

country of origin, car classification and 5 vehicle size variables). Length, width, height,

wheelbase and curb weight relate to the size of the vehicle and are highly correlated. I use

the first component of the Principal Component Analysis to construct a size PCA variable.
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The EV battery pack costs are obtained from Statista.24

Panel information on federal and state level EV purchase rebates is collected from the En-

vironmental Protection Agency25 and state websites. The state level charging infrastructure

subsidies are collected from state official records. Historical gasoline and electricity prices

are obtained from the US Energy Information Administration. US household demographics

including households’ county of residence and annual income, and the fraction of college

graduates in each county are acquired from American Community Survey through IPUMS.

4. Model

The model consists of two parts: a static model of consumer demand and automakers’

pricing decisions in the spirit of Berry et al. (1995) (hereafter BLP) and Petrin (2002), and

a dynamic model of Tesla’s Supercharging investment decision in the spirit of Holmes (2011)

and Houde et al. (forthcoming). In the first part, I use a random-coefficient logit model for

consumer demand, which incorporates consumer preferences for fast charging networks in an

innovative way. Consumers value fast charging in local neighborhoods and along highway

corridors during long-distance trips, and the availability and convenience of both types of

charging depend on consumers’ home locations and travel patterns. Car manufacturers

engage in static Bertrand competition and set national prices optimally. In the second part,

Tesla has perfect foresight and faces a constrained dynamic optimization problem to choose

which locations to cover with Supercharging stations each year. Section 4.1 lays out the

demand model, Section 4.2 discusses firms’ competition in prices, and Section 4.3 presents

Tesla’s investment model.

24https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/.
25https://www.fueleconomy.gov/feg/taxevb.shtml.
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4.1 Consumer demand

In each state and year, households choose from one of the following: buy a BEV, a PHEV, a

non-electric vehicle, or not buy a new vehicle.26 The choice set a consumer faces is assumed

to be all vehicle models with positive sales in the state plus the outside option of not buying

a new vehicle. The indirect utility consumer i obtains from product j in state s in year t is

uijst = αi log(pjt − subsidyjst) + x′jstβ + fijst(Nt; θ) + ξjst + εijst, (1)

where pjt is the national level manufacturer’s suggested retail price (MSRP) and subsidyjst is

the sum of all federal and state EV purchase tax credits an EV can enjoy; pjt−subsidyjst is the

effective price consumers pay for product j;27 xjst is a vector of vehicle characteristics (which

might be specific to state s and year t);28 Nt is the charging network at time t and fijst(Nt; θ)

captures consumers’ preferences for the DCFC network Nt, described in details below; ξjst

is the unobserved product characteristic; and εijst is an unobserved individual taste for the

product that follows i.i.d. Type I Extreme Value distribution. αi is an individual-specific

price sensitivity coefficient that depends on the consumer’s annual household income yi, and

is parametrized as

αi = α0 + α1 log(yi). (2)

The outside option j = 0 is normalized to have utility ui0st = εi0st.

26This could include buying a used vehicle, driving their existing vehicle, or relying on public trans-
portation.

27I do not observe the out-the-door prices consumers actually pay for their new vehicle, which might
include taxes, delivery fees less manufacturer’s or dealer’s discounts. Nor do I observe whether eligible
consumers actually apply for the tax rebates or not. Hence, I assume consumers pay the MSRP less the
EV rebates, which is a common assumption in the literature (Armitage and Pinter (2021) and Sinyashin
(2021)).

28xjst includes a constant, battery range of BEV, battery range of PHEV, year, the number of level
2 charging stations per household in the state, the energy cost of driving 100 miles (which depends on
gasoline/electricity prices and vehicle efficiency), size PCA, horsepower, all-wheel drive, origin dummies
(Europe, Asia or US), body type dummies (car, SUV, pickup truck or van), propulsion system dummies
(BEV, PHEV or non-EV), the interaction terms between the propulsion system dummies and year, the
interaction terms between propulsion system dummies and the fraction of college graduates in the state,
and three-way interactions between the propulsion system dummies, year, and college graduate fractions.
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Consumers are aware of the current DCFC network and care about it when they buy a

BEV with fast charging capability. Let c be the county of residence for consumer i (county

c is a county in state s), and the preference for the charging network fijst(Nt; θ) is written

as

fijst(Nt; θ) = θ1 · local coveragejct + θ2 · travel scorejct, (3)

where local coveragejct takes the value of one if there is at least one DCFC station that is

compatible with j’s charging standard and takes the value of zero if product j is not a BEV,

does not have fast charging capability, or there are no DCFC stations of j’s standard in county

c. travel scorejct is a continuous variable between zero and one that captures how DCFC-

accessible the Primary Interstate Highway System is around county c. It is the fraction of

trips an average household in county c can travel using the Interstate DCFC network and

their BEV j (if product j is not a BEV or is not DCFC compatible, travel scorejct = 0).

Formally, it is written as

travel scorejct =
∑
d

wc(d) · travelablejct(d). (4)

In Equation (4), an average household in county c makes long-distance auto trips to various

destination counties indexed by d. The weighting variable wc(d) is the ratio of the annual

trips an average household in county c takes to destination d over the total number of long-

distance trips the household takes. travelablejct(d) is a dummy variable and takes the value

of one if j is a BEV with fast charging and all highway segments traveled along the route

between counties c and d are covered by DCFC stations of j’s standard.29

The two terms in Equation (3) reflect the two types of occasions where fast charging

might be needed - short trips around where consumers live (for example commute trips

or trips to restaurants nearby), and long-distance trips that span one or more days (for

example road trips or auto business trips). This formulation is arguably more realistic and

29The highway segments and whether they are covered by DCFC stations are defined in Section 3.
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less restrictive than some previous work, mainly in two ways. First, it allows for the fact that

consumers do not just drive around where they live; they take longer trips and might take

that into account when they buy new cars. Meanwhile, enabling long-distance trips with

EVs has been emphasized by policymakers to achieve emissions reduction. It is important

that charging needs during long-distance trips and the charging network along highways are

incorporated. Second, the preference for the highway charging network is location-specific

and depends on the home county of the consumer. A household living in New York almost

for sure care more about whether they can charge on Interstate 95 than on Interstate 5,30

and the contrary is true for most Los Angeles households. The idiosyncratic charging needs

due to different travel patterns are allowed for using the trip information in the rJourney

dataset, and Equations (3) and (4) help to map the same national fast charging network to

how consumers feel differently about it in a structural and convenient way.

The market share of model j in state s in year t is calculated as

sjst =

∫
exp(αi log(pjt − subsidyjst) + xjstβ + fijst(θ) + ξjst)

1 +
∑
l

exp(αi log(plt − subsidylst) + xlstβ + filst(θ) + ξlst)
dGst(yi, ci), (5)

where Gst(yi, ci) is the joint distribution of consumers’ annual household income and resi-

dence county in state s and year t.

4.2 Pricing

I assume the observed prices are the equilibrium outcome of a Bertrand Nash game where

multiproduct manufacturers set static national prices for each product they sell in a year.

The marginal cost is assumed to be constant regardless of quantity, and across states, which is

motivated from the observation that production usually takes place in a centralized setting.31

30Interstate 95 is the main north-south Interstate Highway on the East Coast going through Boston,
New York City, Washington DC, Miami etc. Interstate 5 is the main north-south Interstate Highway on
the West Coast going through Los Angeles, Sacramento, Portland, Seattle etc.

31For example, all Tesla vehicles sold in North America are produced in their factory in Fremont, Cali-
fornia.

19



The log marginal cost of product j in year t is parametrized as

log(MCjt) = w′jtγ + γzevZEV creditsjt + ζjt, (6)

where wjt is a vector of exogenous vehicle characteristics,32 ZEV creditsjt is the number of

ZEV credits BEV j can earn in the ZEV states in year t (if product j is not a BEV or does

not earn any credits, the value is zero),33 and ζjt is the unobserved cost shifter.

The profit automaker f makes from vehicle sales in year t is

πft =
∑
j∈Jft

∑
s

Mst(pjt −MCjt)sjst, (7)

where Jft is the set of products firm f sells in year t, Mst is the number of households living

in state s in year t, and sjst is the market share of product j as defined in Equation (5). The

first order condition with respective to price is given by

∂πft
∂pjt

=
∑
s

Mstsjst +
∑
l∈Jft

∑
s

Mst(plt −MClt)
∂slst
∂pjt

. (8)

4.3 Tesla’s Supercharging investment

Setup. I formulate Tesla’s investment decision as whether and when to cover the counties

and highway segments with Supercharging stations. Covering a county means the county

has at least one in-community Supercharging station; covering a highway segment, which is a

predetermined part on a Primary Interstate, is to have Tesla Supercharging stations at least

32wjt includes a constant, year, imputed battery costs, size PCA, horsepower, all-wheel drive, miles per
gallon equivalent (MPGe), origin dummies (Europe, Asia or US), body type dummies (car, SUV, pickup
truck or van), and propulsion system dummies (BEV, PHEV or non-EV).

33ZEV credits can be traded freely for cash among automakers to comply with the ZEV mandate. The
effective cost of a BEV in one of the ZEV states can be thought of as lowered by the market price of the
credits it earns. For institutional details on the ZEV mandate, see Section 2.3. Note also that the ZEV
credits apply only to the ZEV states and hence vary by whether the state has ZEV mandates, but the
variable ZEV creditsjt does not vary by state and is the credit amount in ZEV states. This is because the
marginal cost is modeled at the national level. Therefore, γzev can be thought of as the monetary value of
the ZEV credits, discounted by the fact that not all sales happen in ZEV states.
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every 100 miles along the segment.34 This formulation helps to translate Tesla’s decision

making from placing individual stations to covering locations, and the reasons for doing this

are discussed next.

The main reason is because the goal of the paper revolves around the trade-offs between

building stations on highways versus building them in communities, and which highways

or counties to build stations. Understanding whether to build them next to restaurants

or offices and on which highway exits is not the goal of this paper. Second, there will be

numerous unobserved factors at the coordinate level affecting Tesla’s decision making, which

can be alleviated when zooming out to a less granular level.35 Third, individual stations can

be placed almost anywhere in the US (leaving aside some feasibility constraints), and hence

finding the optimal geographic coordinates of stations is infinite-dimensional and intractable.

On the other hand, there are around 3,000 counties and 112 Primary Interstate segments,

and the decision on which locations to cover is finite-dimensional and more feasible. Finally,

this location coverage formulation is also consistent with the demand model laid out in

Section 4.1.

Some notations regarding Tesla’s charging network are introduced next. Let C be the set

of possible counties in which to build Supercharging stations, and H be the set of highway

segments. Let L = C∪H be the set of locations Tesla can cover with Supercharging stations,

and |L| be the cardinality of set L, and index a location in L by l. Denote the charging

network in year t by Nt, which is a |L|-vector of zeros and ones such that Nlt = 1 if and

only if location l is covered by year t. Stack Nt for all years into N = {Nt}∞t=0 for notational

convenience. Denote the investment plan in year t by at, which is also a |L|-vector of zeros

and ones such that alt = 1 if and only if location l is newly covered in year t. Stack all at’s

to form a = {at}∞t=0.

Timeline. Tesla is assumed to have perfect foresight, which is a common assumption in

34For details, refer to Section 3.
35For example, a specific location may not be suitable for building a parking lot, but a county should

almost for sure have places for parking lots.
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the literature (Holmes (2011) and Houde et al. (forthcoming)). The timing of the model is

as follows:

(a) Before the start of year 0, no locations are covered yet, i.e. Nl,−1 = 0 for all l. Tesla knows

everything about the EV market that might affect its profits (including all the demand errors

ξjst’s, marginal cost errors ζjt’s, and investment cost errors ηl’s), and chooses an optimal

investment plan a.

(b) At the beginning of each period t, the existing network is Nt−1. Investment at is made

according to plan a. All investment costs are incurred and locations in plan at are covered.

The network is now Nt = Nt−1 + at.

(c) Car manufacturers (including Tesla) observe all information on demand and marginal

cost in year t (including ξjst’s and ζjt’s), and engage in static Bertrand price competition.

Equilibrium car prices pjt’s are set.

(d) Consumers observe the current Tesla Supercharging network Nt and equilibrium car

prices, and make car purchase decisions. Profits are earned by car manufacturers.

(e) Period t ends and period t+ 1 starts from step (b).

Investment costs. The costs of covering a location with Supercharging stations include

the upfront costs (costs of hardware and materials, installation and construction costs, costs

of permitting and labor costs) and operating and maintenance costs (site lease, site and

equipment maintenance and labor costs). Since closures of stations are rarely observed in

reality, I assume all opened stations will not be closed, and all covered locations will not be

uncovered. Hence, at the time of the decision, Tesla should care about all the current and

future costs associated with covering each location.

The (PDV of) cost of covering a county c is parametrized as

costc(λ) = λ1 + λ2Mc + rentc + ηc, (9)

where Mc is the number of households in county c and rentc is the PDV of rent payments
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that depends on the commercial per square foot rent and the imputed area of the station,36

and ηc is an unobserved cost error. λ1 is the average cost of covering a county including

all upfront and future components but rents. The λ2Mc term captures the fact that Tesla

might build larger or more stations for counties with larger population. I do not directly

include the number of stations or the number of chargers in the cost equation because those

are choices made by Tesla and might be correlated with other unobserved factors that affect

costs and thus introduce biases.37 The population of the county is unlikely to change with

the unobserved cost component, and thus can be treated as exogenous.

The (PDV of) cost of covering a highway segment h is parametrized as

costh(λ) = λ3#stationsh + λ4#tripsh + renth + ηh, (10)

where #stationsh is the number of Tesla Supercharging stations on segment h, #tripsh is

the total number of trips that go through segment h each year, renth is the PDV of rent

payments calculated in a similar way as rentc, and ηh is an unobserved cost error for segment

h. Unlike Equation (9), Equation (10) directly includes the number of stations as a variable,

and this is because Tesla usually places a station every 50 miles on the highway, and the

number of stations on a segment depends almost solely on the length of the segment, which

is exogenous. Bringing in the number of stations to the cost equation of segments should not

cause biases. However, the size of each station (i.e. the number of chargers in each station)

is an endogenous choice of Tesla that depends on their expectation on how busy the highway

is and how often the chargers will be utilized. Hence, instead of including the number of

chargers in the equation, I use the number of trips on the segments to proxy for how busy

the segments are. The latter depends on the travel pattern of US households and the layout

36Each charger is assumed to take 160 square feet (the size of a standard parking space)
and each station is assumed to need an additional 400 square feet for equipment. See
https://techcrunch.com/2013/07/26/inside-teslas-supercharger-partner-program-the-costs-and-
commitments-of-electrifying-road-transport/.

37For example, if the cost is lower in some county, Tesla might build larger or more stations in that
county. This could bias the marginal cost of a station or the marginal cost of a charger towards zero.
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of the US Highway System, and is unlikely to depend on Tesla’s charging network.

In the cost specifications, the labor costs are not directly included in Equation (9) or (10),

and are implicitly included as part of the fixed costs λ1 and λ3, which means they are more

or less constant across locations (up to some unobserved errors) or at least not representable

by the prevailing local wage rates. This is because building and maintaining Supercharging

stations is a more centralized process that requires expertise, and the same team of people

could be in charge of the process for all locations. Moreover, the stations require very little

labor input for daily operations, unlike a Walmart store or an Amazon warehouse, which

hires lots of local workers. Hence, I do not assume the labor costs associated with the stations

are proportional to the local wage rates.

Tesla’s value function. Tesla’s value function consists of two parts: automotive profits

from car sales and Supercharging investment costs. I do not include profits or losses from

Supercharging activities in Tesla’s value function for two reasons. On the one hand, I do

not have detailed information on charger usage or prices; on the other hand, they do not

seem to be Tesla’s first-order concerns - Tesla models sold before 2017 were offered lifetime

free charging at any Supercharging stations. If Tesla were to optimize profits from charging

activities, any price below the marginal cost of charging (including but not limited to the

cost of electricity) could not be optimal.

The value function of Tesla can be written as

Π(a) =
∞∑
t=0

ρt
(
πt(Nt)−

∑
l

alt · costl

)
, (11)

where ρ = 0.95 is the time discount factor, πt(Nt) is Tesla’s equilibrium automotive profits in

year t when the Supercharging network is Nt, as defined in Equation (7). Here, the firm index

f = Tesla is dropped for notational simplicity and the argument Nt is added to highlight

that the profit depends on the endogenous charging network. As Nt changes, I allow the

prices of BEVs with fast charging to adjust, and the new equilibrium prices are calculated
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through the pricing FOCs (Equation (8)). The equilibrium profit πt(Nt) is calculated under

the new equilibrium prices. The PDV of all upfront and future cost components, costl, is as

defined in Equations (9) and (10) for counties and highway segments respectively.

There are several complications that are ignored in this model. For example, Tesla might

be financially constrained and cannot borrow freely. This might impede Tesla’s ability to

cover as many locations as they want each year. Alternatively, there might exist uncertainty

on future demand or policy support, and Tesla might act cautiously and expand at the a

slower rate than they otherwise would do. On the other hand, Tesla might take preemptive

moves to secure a leading position, or Tesla might want to build trust among potential

buyers, in which cases Tesla would have incentives to expand fast.

This paper is most interested in understanding the trade-offs associated with the choices

to cover different locations. To that end and to minimize the potential biases caused by the

real world complications mentioned above, Tesla’s problem will be conditional on the number

of locations covered each year (similar to Holmes (2011) and Houde et al. (forthcoming)).

Tesla’s Supercharging investment problem is characterized as the outcome of a constrained

dynamic optimization problem with perfect foresight:

max
a

Π(a) (12)

subject to
∑
l

alt =
∑
l

aolt for all t,

where Π(a) is as defined in Equation (11), and ao is the observed and optimal investment

plan.

5. Identification and estimation of the demand and pricing model

The joint estimation procedure of the demand and pricing model is similar to Petrin (2002).

The parameters are estimated using the method of efficient generalized method of moments

(efficient GMM), which consists of three components. The first component is the orthogonal-
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ity conditions between unobserved product characteristics ξjst’s and a vector of instruments

Zjst. The second component is the orthogonality conditions between the unobserved cost

disturbances ζjt’s and another vector of instruments Vjt. The final component is a micro-

moment that matches the model predicted and observed county penetration of BEV models

with fast charging in California and New York State. The goal of the micro-moment is to

help identify the non-linear parameters on consumer preferences for fast charging networks

(i.e. θ1 and θ2). The three subsections describe the three components respectively.

The GMM algorithm is done 3 times, the first time using the weighting matrix of the 2-

Stage Least-Squares regression, and the second and third times using the optimal weighting

matrix calculated from the previous step. The results are very similar for the 2-step and 3-

step GMM, implying a quick convergence. All the results presented in Section 7 are from the

2-step GMM. The standard errors are calculated following Hansen (2022) and Nevo (2000).

5.1 Demand side instruments

I assume the product characteristics are exogenous except the log effective price log(pjt −

subsidyjst) and the 3 variables related to EV charging (DCFC local coverage, DCFC travel

score, and state level number of level 2 charging stations per household). The moment

conditions are

E[Zjstξjst] = 0, (13)

where Zjst contains the exogenous product characteristics and instruments for endogenous

prices and charging variables. To select the instruments, I first propose a large candidate

set of instruments, and then run first stage linear regressions of the endogenous variables

on the exogenous product characteristics and proposed instruments for a diagnosis of weak

instruments. Finally, I keep only the statistically and economically significant instruments

in the moment conditions. The selected instruments come from 5 big categories, 3 targeting

the effective prices and 2 targeting charging variables.
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The instruments that help mainly to explain the effective prices are subsidies on EV

purchase, cost shifters and BLP instruments. The federal tax credits on EV purchase and

the average state rebate for EVs38 are assumed to be exogenous and in the first category.

The time trends in preferences for BEVs and PHEVs are already controlled for and the

ξjst’s should only contain the temporary deviations from the time trend. On the other

hand, government rebate programs require long-term planning, and the arrival times of

the programs are likely to be random and uncorrelated with temporary demand shocks.

The exogeneity of government EV subsidies is also a usual assumption maintained in the

literature. The exogenous cost shifters include the number of ZEV credits a BEV can

earn in a ZEV state, and the imputed battery costs of EVs. The former is a function

of the battery range, and the latter is a function of the unit price of lithium ion battery

packs and the battery capacity. All of them are heavily reliant on the battery technology

and are assumed to be orthogonal to the demand errors. The BLP instruments describe

the intensity of competition among manufacturers in the characteristic space. Since the

characteristics themselves are assumed to be exogenous, any functions of them are exogenous

too. 7 instruments are of this kind (after the selection of strong instruments), which contain

information on the battery ranges, sizes, and fuel efficiencies of products produced by the

same firm or other firms.

The instruments that are most relevant for the availability of charging infrastructure are

government subsidies and the attractiveness of EVs. Whether the state subsidizes charging

equipment, whether the state subsidizes DCFC charging equipment, and whether the DCFC

subsidy highlights highway locations are assumed to be uncorrelated with the demand errors

and included, for the same argument as the exogeneity of government EV purchase rebates.

For the attractiveness of EVs, there is a slight distinction between instruments for level

2 charging availability and those for DC fast charging. The former is compatible across

38Since the MSRPs are set at the national level, not at the state level, a valid instrument for state
rebates has to be constant across states. Hence, the average rebate across states is used, not the actual
state-level rebate the consumers face.
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BEV charging standards, and can be used for both BEVs and PHEVs. Hence, the overall

popularity of EVs should matter to level 2 charging deployment. On the other hand, DC

fast charging is only available on some BEVs and is incompatible across standards. As

a result, only the attractiveness of BEVs of that standard should directly matter for the

profitability of DCFC stations (the attractiveness of other EV models might matter indirectly

for competition reasons). The included instruments for level 2 charging are the EV dummy

interacted with whether the state has ZEV mandates, and with the average energy cost for

EVs relative to all vehicles. The included instruments for DCFC availability are the BEV

with DCFC capability dummy interacted with whether the state has ZEV mandates, with

the average energy cost for BEVs of the same standard relative to all vehicles, and with the

number of BEV models of the same standard sold.

5.2 Cost side instruments

The marginal costs are calculated by solving the pricing first order conditions in Equation

(8). The calculation is slightly more involved than in BLP, because the prices are set at the

national level, and each equation contains terms from all 49 markets in each year. After

the marginal costs are recovered (for given non-linear parameters (α0, α1, θ1, θ2)), the GMM

criterion function includes the orthogonality moments

E[Vjtζjt] = 0, (14)

where Vjt is the instruments and ζjt is the unobserved cost error as defined in Equation (6).

Since the cost side variables wjt are assumed to be exogenous, they constitute the first part

of Vjt. The remaining part of Vjt are some demand shifters uncorrelated with the cost errors,

including the average gas to electricity price ratio interacted with the BEV, PHEV and non-

EV dummies, the average local coverage, and the average travel score.39 The construction of

39Since the marginal cost equation is at the national level while the original forms of the demand
shifters are at the state level, the averages of those demand shifters across states are taken to form cost
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charging stations is irreversible, as closures of stations are rarely observed in the data, and

as a result, the decision to build stations should take into account long-term variables, not

just the current-year profitability. The unobserved cost errors are short-term errors, as the

time trends are already controlled for. Hence, the average local coverage and average travel

score should be valid instruments that are uncorrelated with the cost errors.

5.3 Identifying charging preferences and the micro-moment

First, the case without any micro-moment is discussed. The non-linear parameters on DCFC

charging preferences (θ1, θ2) are identified through the market-level variations (i.e. across

states and over time) in local coverage and travel score. A rich set of controls are included

in the demand specification to address market-level differences in EV preferences that are

not due to DCFC charging availability. Through those controls, we allow for distinct time

trends for buying vehicles of different fuel types, differentiating preferences across states for

vehicles of different fuel types explainable by the fraction of college graduates in the state,

and the state-time varying tastes for vehicles of different fuel types. For example, if well

educated consumers are first adopters of green cars and other consumers catch up over time,

this can be explained by the coefficients in those controls and will not be wrongly attributed

to development of DCFC infrastructure through the correlation (not causation) between

DCFC development and BEV market shares. For the complete list of demand controls, refer

to footnote 28.

If the micro-moment were not added, (θ1, θ2) would be solely identified from the relation-

ship between state-year level DCFC availability and state-year level consumers’ responses

(after properly controlling for other covariates), whereas the valuable information contained

in the county-year level relationships cannot be utilized. Since the local coverage and travel

score variables are at the county level and the model is capable of predicting county level

market shares, what is needed is the observed county-level market shares, which can be

side instruments.
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matched with the model predicted ones to better identify (θ1, θ2). To that end, the county-

level market shares of EV models are collected for California and New York State, and are

matched with model predicted market shares to form a micro-moment in the GMM criterion

function.

More specifically, the micro-moment matches the observed and model predicted market

penetration (i.e. sum of market shares from 2012-2020) of each BEV model with fast charging

in each county.40 Let penocj and pencj(α, θ) be the observed and model predicted market

penetration of model j (which is a BEV model with fast charging). Let gcj = (penocj −

pencj(α, θ))
2 be the squared difference between the two values, which is non-negative and

approaches zero when (α, θ) approaches the true value. Let ḡ be the average value of gcj,

and the micro-moment can be written as

Wmm · ḡ2, (15)

where Wmm is the weighting matrix (in this case, a scalar) of the micro-moment.41

6. Identification and estimation of Tesla’s investment decision

The parameters on the investment side that remain to be identified and estimated are λ =

(λ1, λ2, λ3, λ4), as defined in Equations (9) and (10). I follow Holmes (2011) and Houde

et al. (forthcoming) and take a revealed preference approach that any feasible alternative

investment plan is not more profitable than the observed plan ao. This assumption gives rise

to inequality constraints and leads to a moment inequality estimator for λ. This approach

circumvents solving the infinite horizon dynamic programming problem of location choices,

40The reason why I do not match the market shares in individual years is because I observe there are
some discrepancies between the state-year level sales from the IHS Markit dataset and the county-year
sales datasets, and the discrepancies are significantly reduced when sums are taken across years. This is
likely because they use different methods in attributing registration records to years.

41In the first-step GMM, Wmm = 1. In later steps, Wmm is updated to be the inverse of the estimated
variance of gcj from the previous step.
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which is infinite dimensional (even with a finite horizon problem, the dimensionality is very

high given the large set of possible locations).

6.1 Forming the moment inequalities

To form those inequalities, I only consider plans that are minimally perturbed from the

observed plan, i.e. where the coverage years of two locations are swapped. The benefit

is twofold. First, I cannot fully control for the financial constraints and other dynamic

considerations Tesla faces (Section 4.3 has a discussion on this). Small deviations that hold

fixed the number of locations covered each year are more likely to be feasible and within

Tesla’s consideration. Hence, they are more robust to the real world complications. Second,

with such bilateral swaps, only profit streams between the two coverage years are affected,

avoiding making assumptions on the distant future profit streams and reducing computation

burden.

Denote the two locations being swapped by l and l′, and the two coverage years by t and

t′ where t < t′. Denote by al,l
′

the alternative plan where the coverage year of location l

(l′) becomes t′ (t) and everything else is the same as ao. Let Nτ (a) be the Supercharging

network in year t under plan a. The revealed preference approach states

Π(ao;λ)− Π(al,l
′
;λ) ≥ 0, (16)

where Π(·;λ) is as defined in Equation (11). Plugging in the functional form of the value

function to the inequality, the constraint can be written as

Π(ao;λ)− Π(al,l
′
;λ) =

t′−1∑
τ=t

ρτ
[
πτ
(
Nτ (a

o)
)
− πτ

(
Nτ (a

l,l′)
)]

− (ρt − ρt′)
[
costl(λ)− costl′(λ)

]
≥ 0 (17)

There are two types of locations, counties and highway segments, and as a result, there
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are four types of bilateral swaps - switching two counties, switching two segments, switching

an early-covered county and a late-covered segment, and switching an early-covered segment

and a late-covered county. The identification argument is discussed separately for each type

of swaps below.

Switch two counties. The inequality can be written as

Y c,c′ − λ2Xc,c′

2 + εc,c
′ ≥ 0, (18)

where Y c,c′ is the discounted difference in automotive profit flows net of rents between the

actual and alternative plan, where the automotive profits are calculated using the estimates

from the demand and pricing model:

Y c,c′ =
t′−1∑
τ=t

ρτ
[
π̂τ
(
Nτ (a

o)
)
− π̂τ

(
Nτ (a

c,c′)
)]
− (ρt − ρt′) · (rentc − rentc′), (19)

Xc,c′

2 is the discounted difference in number of households between county c and c′:

Xc,c′

2 = (ρt − ρt′) · (Mc −Mc′), (20)

and εc,c
′

captures the unobserved components in the value difference, due to unobserved

investment cost errors ηc and ηc′ , using the estimated demand parameters not the actual

ones, and any model misspecification or other factors not included in the model.

Equation (18) shows how λ2 is partially identified. Ignore the error term εc,c
′

for now.

Y c,c′ and Xc,c′

2 are directly calculable from the demand model and the data, and the range

of λ2 can be derived from the inequality. For illustration, consider the case where county c

(covered first) is smaller in size than county c′ (covered next). The actual plan would have

a lower investment cost than the swapped one if larger counties are more costly to cover

(which is the case given the estimated range of λ2 in Section 7.2), and the profit flows and

rent costs might be different too. Suppose the PDV of profit flows net of rent costs is lower
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for the actual plan as well. The fact that the alternative plan is not chosen means that

the higher investment cost in the alternative plan cannot be fully compensated for with the

higher profits net of rent costs, which leads to a lower bound for λ2. Mathematically, Xc,c′

2

is negative in this case, and the inequality implies λ2 ≥ Y c,c′

Xc,c′
2

. If Y c,c′ is negative, Y c,c′

Xc,c′
2

is

a meaningful lower bound for λ2, and the more positive Y c,c′

Xc,c′
2

is, the more information the

revealed preference contains, and the tighter the lower bound is.

The case where county c is larger in size than county c′ is similar. The actual plan would

have a higher investment cost than the swapped one (if larger counties are more costly to

cover). Suppose the PDV of profit flows net of rent costs is higher for the actual plan as well.

The fact that the alternative plan is not chosen means that the lower investment cost in the

alternative plan cannot fully compensate for the lower profits net of rent costs, which leads

to an upper bound for λ2. Mathematically, Xc,c′

2 is positive in this case, and the inequality

implies λ2 ≤ Y c,c′

Xc,c′
2

. If Y c,c′ is positive, Y c,c′

Xc,c′
2

is a meaningful upper bound for λ2, and the

smaller Y c,c′

Xc,c′
2

is, the more information the revealed preference contains, and the tighter the

upper bound is.

The arguments above omit the error term εc,c
′
. If the error term is non-zero, focusing

on single inequalities could make the identified range for λ2 unrealistically small, or even

non-existent. Consider the first case where Xc,c′

2 is negative. The lower bound for λ2 should

be λ2 ≥ Y c,c′+εc,c
′

Xc,c′
2

. If the realized εc,c
′

is very negative but is ignored, the lower bound will be

mistakenly large. Similarly, in the second case where Xc,c′

2 is positive, the true upper bound

for λ2 is λ2 ≤ Y c,c′+εc,c
′

Xc,c′
2

; but if the realized εc,c
′

is very positive but is ignored, the upper

bound will be mistakenly small. A solution to this is to take averages across inequalities to

make the average of the errors vanish.42

Formally, let Zc,c′ be a vector of non-negative instruments that are uncorrelated with

42If the εc,c
′
’s were independent across swaps, then the average of the errors would approach zero as

the number of swaps increases. However, two distinct swaps might involve the same county, breaking the
independence assumption. This dependence will be taken care of when calculating the standard errors
using Bootstrap.
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εc,c
′
. Then, λ2 can be estimated using the following moment inequality conditions:

E[Zc,c′ · (Y c,c′ − λ2Xc,c′

2 )] + E[Zc,c′ · εc,c′ ] ≥ 0 (21)

The second term E[Zc,c′ · εc,c′ ] = 0 under the assumption, and hence the inequality becomes

E[Zc,c′ · Y c,c′ ]− λ2 · E[Zc,c′ ·Xc,c′

2 ] ≥ 0 (22)

Switch two segments. The inequality is

Y h,h′ − λ3Xh,h′

3 − λ4Xh,h′

4 + εh,h
′ ≥ 0, (23)

where Y h,h′ is the discounted difference in profit flows from car sales net of rents between

the actual and alternative plan:

Y h,h′ =
t′−1∑
τ=t

ρτ
[
π̂τ
(
Nτ (a

o)
)
− π̂τ

(
Nτ (a

h,h′)
)]
− (ρt − ρt′) · (renth − renth′), (24)

Xh,h′

3 is the discounted difference in the number of Supercharging stations between segment

h and h′:

Xh,h′

3 = (ρt − ρt′) · (#stationsh −#stationsh′), (25)

Xh,h′

4 is the discounted difference in the annual number of trips between segment h and h′:

Xh,h′

4 = (ρt − ρt′) · (#tripsh −#tripsh′). (26)

The identification argument for λ3 and λ4 is similar to that for λ2 in the swap-two-counties

case, except that there are now two parameters to identify, and the identified set should be

a region in the R2 space, instead of a 1-dimensional interval range for a single parameter.
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Let Zh,h′ be a vector of non-negative instruments. The moment inequality conditions are

E[Zh,h′ · Y h,h′ ]− λ3 · E[Zh,h′ ·Xh,h′

3 ]− λ4 · E[Zh,h′ ·Xh,h′

4 ] ≥ 0. (27)

Switch a county and a segment. The remaining two cases where an early-covered

county and a late-covered segment, and an early-covered segment and a late-covered county

are swapped are very similar. The details are left for Appendix A.

Unifying the four types. A unifying way to write the moment inequalities for all four

types of swaps is presented below.

Let l and l′ be the indices for the two locations swapped in the alternative plan. Let

Z l,l′ be a vector of non-negative instruments that are uncorrelated with εl,l
′
. The moment

inequality conditions write

E[Z l,l′ · Y l,l′ ]−
4∑

k=1

λk · E[Z l,l′ ·X l,l′

k ] ≥ 0, (28)

where

Y l,l′ =
t′−1∑
τ=t

ρτ
[
π̂τ
(
Nτ (a

o)
)
− π̂τ

(
Nτ (a

l,l′)
)]
− (ρt − ρt′) · (rentl − rentl′),

X l,l′

1 = (ρt − ρt′) ·
[
1(l is a county)− 1(l′ is a county)

]
,

X l,l′

2 = (ρt − ρt′) ·
[
Ml −Ml′ ],

X l,l′

3 = (ρt − ρt′) ·
[
#stationsl −#stationsl′ ], and

X l,l′

4 = (ρt − ρt′) ·
[
#tripsl −#tripsl′ ].

(Here, let Ml = 0 for segments, and #stationsl = #tripsl = 0 for counties for the sake of

rigor.)
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6.2 Instruments

The county size Ml, number of stations on a segment #stationsl (which is roughly a step

function of the segment length), and number of annual trips going through the segment

#tripsl are assumed to be uncorrelated with εl,l
′
. I consider the groupings instruments

similar to Holmes (2011) and Houde et al. (forthcoming). A naive version of the grouping

instrument would take the value of 1 if a swap (l, l′) belongs to a group, and 0 otherwise. To

make the magnitudes across swaps more comparable, the naive instrument will be multiplied

by ρ−t, so that the values are rescaled to the present value in the year when the swap begins.

That is, the grouping instrument takes the value of ρ−t (where t is the coverage year of

location l) if a swap (l, l′) belongs to a group, and 0 otherwise. The groups are defined based

on the swap type, and the values of Ml, #stationsl and #tripsl, and are defined in Table B1

in Appendix B. There are 50 groups, referred to as the basic instruments.

In addition, X l,l′

k is a function of the exogenous variables M , #stations and #trips, and

hence are uncorrelated with εl,l
′
. Any functions of X l,l′

k are valid instruments too. Besides

the basic instruments, I also include Order-1 instruments, where the basic instruments are

interacted with the non-negative X l,l′

k+, defined as X l,l′

k+ = X l,l′

k −min
l,l′
{X l,l′

k }. For each basic

instrument (i.e. each group), there are 4 Order-1 instruments, corresponding to k = 1, 2, 3, 4.

Order-2 instruments are the interactions between the basic instruments and X l,l′

k+ ·X
l,l′

m+. For

each basic instrument, there are 10 Order-2 instruments. There are 50 basic instruments,

200 Order-1 instruments, and 500 Order-2 instruments. I apply different sets of instruments

for estimation, and the results for the basic instruments, the basic instruments plus Order-1

instruments, and the basic instruments plus Order-1 and Order-2 instruments are presented

in Section 7.2. With Order-1 and Order-2 instruments, the identified set of λ narrows down.
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6.3 Characterizing the identified set of λ

The identified set of λ, Λ, is such that all (the sample analog of) the moment inequality

conditions are satisfied and can be written as

Λ =
{
λ ∈ R4 :

( 1

#dev

∑
(l,l′)

Z l,l′

g Y l,l′
)
−

4∑
k=1

λk
( 1

#dev

∑
(l,l′)

Z l,l′

g X l,l′

k

)
≥ 0, for all g

}
, (29)

where #dev is the number of (l, l′) pairs, or the number of deviations considered.

Note that all the constraints are linear inequalities of λ. Hence, the identified set has the

following good properties. If the identified set is non-empty (which is the case in this paper),

it will be a convex and connected 4-dimensional polygon, and can be fully characterized

by its vertices. These vertices are the extreme points of the identified set. The identified

set is the convex hull of these vertices. That is, a point is in the identified set if and only

if it can be represented by a linear combination of the vertices. In Section 7.2, the set of

estimated investment cost parameters will be represented by the vertices of the set. If one is

interested in knowing the estimated range of a single parameter λk, it is the interval between

the minimum and maximum values of the k-th coordinates of the vertices.

6.4 Confidence region

I also calculate the 95% confidence region for the identified set. I follow Holmes (2011) and

use a subsampling procedure with Bootstrap samples to correct for the fact that different

deviations may involve the same location and hence are correlated. I obtain the mean and

variance-covariance matrix of the components in the inequalities (Equation (29)) and draw

1000 simulations from the multivariate normal distribution with the estimated mean and

variance-covariance matrix. I then calculate the identified set with each draw, and find

the points that are inside the simulated identified set 95% of the times to form the 95%

confidence region. The procedure is described in detail in Appendix C.
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7. Estimation results

7.1 Demand and MC parameters

The demand and MC parameters are jointly estimated using the GMM framework with

the demand side moments (Equation (13)), the MC side moments (Equation (14)) and the

micro-moment (Equation (15)). Table 2 shows the estimated demand parameters, and Table

3 presents the estimated MC parameters.

All the coefficients on vehicle characteristics in the demand model come out signifi-

cant and have the expected signs: all else equal, consumers prefer vehicles with a smaller

fuel/electricity cost, a higher horsepower, a larger size, and all-wheel drive. American ve-

hicles are preferred to European ones or Asian ones, and Asian vehicles are slightly more

preferable than European ones. Cars and SUVs are more preferred to pickup trucks and

passenger vans. Consumers value EVs with a larger battery range, more so for BEVs than

for PHEVs, and consumers are more likely to buy EVs if the level 2 charging infrastructure

in the state is more developed. The trend parameters convey confirmative messages too.

The overall preference for buying a new vehicle declines over year, but increases for EVs. If

2012 is treated as the starting year, consumers first prefer conventional vehicles over EVs,

especially over BEVs. This could be due to their lack of confidence in the BEV technology

or the future development in the early years. Over time, their preferences for EVs are slowly

catching up. Looking at the geographic variations, states with more college graduates tend

to be early adopters of the new technology, especially for BEVs. Over time, other states are

catching up.

Price sensitivity The negative price coefficient α0 implies consumers like lower prices,

and the average own-price elasticity is -3.45, which is in line with the estimates in the prior

literature on automobiles.43 The sensitivity to prices also decreases with consumer income,

as indicated by the positive α1. The average own-price elasticities for consumers with income

43The estimated own-price elasticity is -3.28 in Goldberg (1995), -2.7 in Li (2019), and -6.26 in
Sinyashin (2021).
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Table 2: Demand Parameter Estimates

Estimate Standard error Significance

Coefficients on log effective price

Const. (α0) -6.643 0.247 ***

Log household annual income (α1) 0.241 0.019 ***

Coefficients on fast charging availability

Local coverage (θ1) 0.058 0.032 *

Travel score (θ2) 0.057 0.020 ***

Vehicle characteristics - general

Constant 30.400 0.738 ***

Energy cost per 100 miles -0.093 0.003 ***

Horsepower 0.005 0.000 ***

Size PCA 0.367 0.007 ***

Origin - Asia -0.103 0.013 ***

Origin - Europe -0.135 0.026 ***

All-wheel drive 0.726 0.027 ***

Body type - car 0.666 0.031 ***

Body type - SUV 0.796 0.029 ***

Body type - pickup -0.008 0.039

Vehicle characteristics - EV

BEV battery range 0.018 0.001 ***

PHEV battery range 0.015 0.001 ***

State level 2 stations per household 8675.440 802.202 ***

Trends

Year -0.141 0.009 ***

BEV -6.156 0.532 ***

PHEV -2.974 0.358 ***

Year×BEV 0.388 0.104 ***

Year×PHEV 0.404 0.073 ***

BEV×college 5.566 2.260 **

PHEV×college 2.983 1.682 *

Year×BEV×college -2.621 0.447 ***

Year×PHEV×college -2.468 0.330 ***

Note: This table presents the demand estimates of the BLP model.

*p<0.1; **p<0.05; ***p<0.01.
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in each of the four quartiles are -4.17, -4.00, -3.87 and -3.35 respectively.

Preference for fast charging The preference for fast charging parameters are both

positive and significant, and θ̂1 ≈ θ̂2, implying consumers value local coverage and highway

coverage almost equally. That is, consumers receive the same utility when their county has a

DCFC station or when all their long-distance trip routes are covered with DCFC stations.44

The average semi-elasticity of market share with respective to local coverage is 0.1343, and

with respective to travel score is 0.1340. Moreover, the second derivatives of market share

with respect to log price and local coverage or travel score are consistently negative, i.e.

∂2sjct
∂ log(pjt − subsidyjct) ∂local coveragejct

< 0, and

∂2sjct
∂ log(pjt − subsidyjct) ∂travel scorejct

< 0, (30)

implying that building DCFC stations becomes a more effective tool to boost sales when

prices are lower and in that sense better fast charging infrastructure and lower vehicle prices

are complements.

Marginal costs and markup Estimated marginal costs (net of ZEV credits) can be cal-

culated from the pricing FOCs (Equation (8)). Table 3 presents the parameter estimates for

the log(MC) equation (Equation (6)). The estimates all have the expected signs: marginal

costs increase with time, size, horsepower, all-wheel drive and MPGe. Vehicles from Europe

are more costly than those from Asia or America, and cars and SUV tend to be more costly

than pickup trucks and passenger vans.45 EVs are more costly to produce than conventional

vehicles, and BEVs are slightly more costly than PHEVs. Battery costs contribute to a

non-negligible part of total marginal costs, and ZEV credits effectively reduce BEV costs.

44From firms’ perspective, it is easier to build a single station in a county than to cover all highways
nearby with DCFC stations. Hence, if Tesla just wants to stimulate purchases in a single county, it is
more likely to build a Supercharging station in the county directly. However, there will be a positive ef-
fect on other counties if a highway segment is covered. Tesla might want to cover highway segments when-
ever they boost sales from multiple counties nearby. This rationale will be revisited and manifested in the
counterfactual analysis.

45This could be because there is a larger fraction of high-end luxury cars and SUVs than luxury pick-
ups or vans.
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Table 3: log(MC) Parameter Estimates

Estimate Standard error Significance

Vehicle characteristics - general

Constant 9.9805 0.0198 ***

Year 0.0059 0.0015 ***

Size PCA 0.0522 0.0045 ***

Horsepower 0.0032 0.0001 ***

All-wheel drive 0.1650 0.0175 ***

MPGe 0.0055 0.0007 ***

Origin - Asia 0.0577 0.0110 ***

Origin - Europe 0.3097 0.0138 ***

Body type - car 0.1071 0.0188 ***

Body type - SUV 0.0668 0.0179 ***

Body type - pickup -0.2584 0.0198 ***

Vehicle characteristics - EV

BEV 0.1578 0.0679 **

PHEV 0.1236 0.0254 ***

Imputed battery cost (in thousands) 0.0169 0.0026 ***

Number of ZEV credits -0.0720 0.0194 ***

Note: This table presents the marginal cost estimates of the BLP model.

*p<0.1; **p<0.05; ***p<0.01.

Table 4 presents the distribution of estimated MCs, margins and markups. The estimates

are in general consistent with numbers in automakers’ public financial reports. For example,

Tesla reports its automotive gross margin to be around 25% in its Form 10-K, compared

to my median estimate of 26.9%.46 The markups range from 37.3% at the 10th percentile

to 47.3% at the 90th percentile for all vehicles, and are lower for PHEVs and the lowest

for BEVs. The markups range from 30.1% (10th percentile) to 41.4% (90th percentile) for

PHEVs, and from 24.2% (10th percentile) to 40.3% (90th percentile) for BEVs. This can

be explained by the relatively limited demand for EVs compared with conventional vehicles,

46Note that Tesla treats the sales of ZEV credits as part of its revenue, while I treat it as a reduction
in costs. If the margin reported by Tesla is adjusted to fit my definition, this will increase the margin,
making it even closer to my estimates.
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even under various policy supports. Tesla is more successful than other BEV manufacturers,

earning markups between 33.1% (10th percentile) and 41.6% (90th percentile), by providing

a more extensive charging network and larger battery ranges.

Table 4: Distribution of Estimated MCs and Markups

10th 25th Median 75th 90th

All vehicles

MSRP 18,698 23,073 29,725 38,939 52,900

MC (net of ZEV credits) 13,065 16,032 20,821 27,014 37,083

Margin 5,544 6,798 8,902 11,761 16,304

Markup 37.3% 41.7% 43.5% 45.3% 47.1%

PHEVs

MSRP 25,620 27,338 39,995 66,775 95,740

MC (net of ZEV credits) 19,062 20,364 29,190 48,165 67,692

Margin 6,093 6,822 11,248 18,649 27,586

Markup 30.1% 32.1% 35.3% 39.1% 41.4%

BEVs

MSRP 25,000 29,600 36,620 42,400 69,870

MC (net of ZEV credits) 20,233 23,688 26,168 32,659 51,282

Margin 4,788 6,208 8,528 10,688 18,679

Markup 24.2% 26.5% 29.5% 35.7% 40.3%

Tesla BEVs

MSRP 40,995 53,950 68,000 79,745 82,750

MC (net of ZEV credits) 30,724 39,707 50,302 56,861 60,294

Margin 10,141 14,891 18,463 21,875 23,100

Markup 33.1% 35.2% 36.7% 38.7% 41.6%

Note: This table presents the distribution of the vehicle prices (Manufacturer’s
Suggested Retail Price), estimated marginal costs less any ZEV credits, esti-
mated margin (difference between MSRP and MC), and estimated markup
(margin over MC). The 10th, 25th, 50th, 75th and 90th percentiles of the dis-
tributions are presented.
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7.2 Supercharging station costs

Following the moment inequality approach described in Section 6, the investment cost pa-

rameters λ in Equations (9) and (10) are estimated. I use the basic instruments, and optional

Order-1 and Order-2 instruments for the estimation. The sets of estimated λ are non-empty

in all cases. Every estimated set is a convex polygon in the R4 space, and is fully character-

ized by specifying all vertices of the polygon. The coordinates of those vertices, and thus the

full characterization of the estimated sets, are presented in Appendix D. The extreme points

of those vertices give rise to the lower and upper bounds for each individual parameter λk,

as shown in Table 5. The extreme points in the confidence region are shown in the last two

columns of Table 5.

The estimated ranges for all cost parameters are positive,47 as expected, indicating that

covering a county is costly and the cost increases with county sizes, and that each station

on the highway is costly and the cost increases with highway usage. As more instruments

are added to the constraints, the ranges shrink but the changes are not dramatic, which is

reassuring that the instruments are exogenous and valid.48 In what follows, I will focus on

the results with the full set of instruments.

With the vertices of the estimated set of λ, I could calculate the cost bounds for covering

each county and each segment, and each station.49 The distribution of costs are presented in

Table 6. The way to read the table is the following: across all the counties that are covered

during the data period, the estimated cost is at most between $3.41 million and $5.39 million

47Holmes (2011) restricts the signs of the parameters in the inequality constraints to ensure the results
are sensible. I do not include those restrictions, and the signs all turn out as expected.

48Imagine if the estimated ranges narrowed by a lot or even became non-existent when Order-1 instru-
ments were added to the basic instruments, this would imply the Order-1 instruments brought a lot of
new constraints. However, multiplying the basic groupings instruments by some variable orthogonal to the
errors should not bring too much new information, unless the variable were actually correlated with the
errors and the new constraints were wrong.

49The calculation is done by plugging in the coordinates of each vertex, and the attributes of the lo-
cation (rental costs, number of households, number of stations on the segment, and/or number of annual
trips). The maximum and minimum costs across these vertices are the estimated upper and lower bounds
of the costs. The cost function is linear in λ, which guarantees the cost evaluated at any point in the esti-
mated set of λ is within the range evaluated at the vertices.
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Table 5: Investment Cost Parameter Estimates

Panel A: Basic instruments

Estimated range 95% Confidence region

Min Max Min Max

Dummy for county (λ1), in millions 2.398 4.790 0.813 5.566

# households in county (λ2) 8.630 11.584 8.300 12.564

# stations on segment (λ3), in millions 0.953 1.635 0.166 1.922

# trips on segment (λ4) 0.247 0.657 0.129 0.991

Panel B: Basic + Order-1 instruments

Estimated range 95% Confidence region

Min Max Min Max

Dummy for county (λ1), in million 2.413 4.666 0.788 5.474

# households in county (λ2) 8.630 11.584 8.347 12.524

# stations on segment (λ3), in million 0.953 1.585 0.283 1.865

# trips on segment (λ4) 0.290 0.657 0.184 0.968

Panel C: Basic + Order-1 + Order-2 instruments

Estimated range 95% Confidence region

Min Max Min Max

Dummy for county (λ1), in million 2.427 4.567 1.010 5.258

# households in county (λ2) 8.630 11.584 8.340 12.388

# stations on segment (λ3), in million 0.953 1.545 0.339 1.786

# trips on segment (λ4) 0.323 0.657 0.226 0.962

Note: This table presents investment cost parameter estimates. The estimated set is a convex polygon and

the extreme points in each dimension are shown in Columns 2 and 3. The 95% confidence region is calcu-

lated using the method detailed in Appendix C. The extreme points in the confidence region along each

dimension are shown in Columns 4 and 5.

for 25% of the counties, and at most between $4.29 million and $6.12 million for half of the

counties.50 The median cost of a community Supercharging station is between $4.1 and

$6 million, while the median cost of an along-highway Supercharging station is between

$2.03 and $2.5 million. A community station is estimated to be around twice as costly as

an along-highway station. This could be due to higher rents, higher costs associated with

50To be more accurate (but at the risk of repetition), the table reads the estimated minimum cost is
at most $3.41 million for 25% of the counties, and at most $4.29 million for half of the counties; the esti-
mated maximum cost is at most $5.39 million for 25% of the counties, and at most $6.12 million for half
of the counties.
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upgrading the power grids in populous areas, more costly and tedious permitting process,

higher management costs, higher electricity costs,51 and any other challenges related to high

population density.

Table 6: Investment Cost Distributions (in Millions)

10th 25th Median 75th 90th

Cost of covering a county

Lower bound 2.97 3.41 4.29 6.14 9.29

Upper bound 5.04 5.39 6.12 7.88 11.97

Cost of a community Supercharging station

Lower bound 2.92 3.28 4.10 5.83 8.81

Upper bound 5.00 5.27 6.00 7.55 11.23

Cost of covering a highway segment

Lower bound 4.11 7.28 9.26 12.25 17.03

Upper bound 5.02 8.97 11.28 14.93 20.03

Cost of an along-highway Supercharging station

Lower bound 1.47 1.77 2.03 2.43 2.95

Upper bound 2.01 2.25 2.50 2.85 3.67

Note: For each location, the bounds of the investment cost are calculated

from the estimated set of investment cost parameters, as described in foot-

note 49. The 10th, 25th, 50th, 75th and 90th percentiles of those bounds are

presented in this table.

Note that the costs are the discounted lifetime costs (evaluated at a 0.95 discount factor),

including both the upfront costs like the equipment costs and installation costs, and the flow

operating costs like the rent and maintenance costs. That is why these numbers may look

larger than numbers from other sources that just include the upfront setup cost. For example,

a report by the Idaho National Laboratory (INL) gives engineering estimates on the cost of

DCFC stations (Francfort et al. (2017)). Depending on the station capacity and whether

the station has a photovoltaic system, the estimated upfront cost ranges from $0.38 million

to $2.03 million, while the annual operating cost ranges from $0.16 million to $0.51 million.

51The electricity cost is likely to be higher for community stations if they are utilized more and drivers
pay less than the cost of electricity on average, which is plausible given Tesla offered free charging for
models sold before 2017 and had various programs to subsidize charging since 2017.
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With a discount factor of 0.95, the discounted lifetime cost ranges from $3.64 million to

$12.32 million. Three remarks follow: First, operating costs constitute a significant part

of the overall lifetime costs (they are at least 5 times as costly as the upfront costs), and

should not be ignored in cost calculations. Second, the INL estimates are for non-Tesla DCFC

stations, which might be higher than Tesla Supercharging stations. Tesla might have a larger

bargaining power in the procurement process or might be more efficient than other charging

companies. Third, these are engineering costs, not economic ones - any non-monetary costs

are not included. Hence, these number should only serve as an orders-of-magnitude check.

My estimated costs of Supercharging stations are similar in magnitudes to those numbers.

Few papers in the literature estimate the costs of charging stations. An exception is Li

(2019), who uses a static investment model and recovers the charging station costs from

firms’ first order conditions with respect to charging stations. She estimates a DCFC station

costs about $10,000 per year on average, which converts to a discounted present value of $0.2

million using a 0.95 discount factor. This number is significantly lower than the estimates

in the Idaho National Laboratory report and than my estimates, and a potential reason

could be that her model is static. With a dynamic environment, firms cannot undo an

investment or collect scrap values from selling existing investments (at least the closures of

stations are not observed in the data). Hence, an investment could pay off in the long run.

If the model is wrongly assumed to be static and ignores the fact that the investments can

generate long-lasting benefits, the present value of marginal profit streams of the investments

are underestimated by 20 times (if the discount factor is 0.95 and the marginal flow profits

are constant over time). The implied costs of the investments will be biased towards zero

by a similar factor. This demonstrates the advantage of my approach, and highlights the

importance of having a dynamic model of investments in the context of EV charging.
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8. Counterfactual analysis

In this section, I use the estimated model to understand how Tesla’s Supercharging invest-

ment decision interacts with the government EV purchase subsidy and estimate the effect of

the purchase subsidy on the Supercharging network, consumer welfare and the environment.

Specifically, I reduce the purchase subsidy by 20%52 for Tesla vehicles from 2017 to 202053

and compare the differences between the actual Supercharging network and the network

under the reduced subsidy. The overall changes in consumer welfare54 and long-distance

miles driven by Tesla vehicles are calculated, which are then decomposed into the direct

effect of the subsidy and the indirect effects through changes in the Supercharging network.

Finally, changes in EV miles are translated into carbon dioxide (CO2) emissions and the

social value of the avoided emissions is assessed. Appendix E presents the algorithm that

obtains the equilibrium investment decision under the new environment. The results for a

10% subsidy change are available upon request.

The results show that the 20% purchase subsidy increase provides more incentive to

Tesla’s investment and has an expansionary effect on the Supercharging network. 18% of

the locations in the network would experience an acceleration in investment timing. The

subsidy increase induces a direct $5.01 billion increase in consumer surplus during 2017 to

2020 through improved utility of Tesla vehicles due to lower effective prices. Moreover, the

improvements in the Supercharging network yield a further $93 million gain in consumer

surplus. While the direct gain in consumer surplus can be viewed as a transfer from the

government to consumers and is welfare neutral, the indirect increase in consumer surplus

through network improvements is the byproduct of the subsidy and is the net gain from the

policy.

52The average federal and state subsidy is $5,193 per Tesla vehicle during 2017 to 2020. The 20% re-
duction in subsidy is $1,039.

53I decide to introduce the subsidy change since 2017 because that is when Tesla started to greatly
expand its Supercharging network and when the best-selling Tesla Model 3 was introduced.

54The changes in consumer welfare are calculated using the Compensating Variation approach (Small
and Rosen (1981)).
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In addition to the indirect gain in consumer surplus, the environmental impacts are

socially beneficial and are the key motivation for government interventions. My model is

capable of assessing the long-distance miles driven by EVs, which can then be converted

into CO2 emissions and associated social value of avoided emissions. The long-distance

miles driven by Tesla vehicles is calculated as the lengths of all the long-distance trips each

household with a Tesla can drive using the Supercharging network,55 and is determined by

the following factors: the number of Tesla vehicles sold, the average driving needs of Tesla

owners and the average fraction of trips that can be traveled using the highway Supercharging

network. The purchase subsidy increases Tesla vehicle sales and EV miles directly through

lower prices, which is the common channel of environmental impact studied in the literature.

Additionally, through the stimulating effect on Tesla’s investment, miles driven can increase

in three ways: First, the more accessible network increases the attractiveness of Tesla vehicles

and hence increase Tesla car sales. Second, as the network becomes accessible, those who

drive more will be attracted to buy Tesla cars (the selection effect). Finally, with a better

highway network, more routes are now be travelable with Tesla cars. Note that the average

life span of a EV is 12 years, so the annual effects are multiplied by 12 to get an estimated

lifetime effect on miles driven. Table 7 shows the effects of the different channels on long-

distance miles driven by Tesla vehicles.

A 20% change in the purchase subsidy from 2017 to 2020 increases Tesla long-distance

miles by 6.2 billion miles directly and 0.8 billion miles indirectly. Assuming a gasoline vehicle

emits an average of 0.97 pound of CO2 per mile while a BEV produces an average of 0.33

pound (in the electricity generation process)56 and the social cost of CO2 emissions is $51 per

ton (the US governments current interim estimate), the direct and indirect effects translate

into a reduction in CO2 emissions by about 2 million and 0.27 million tons respectively, or

55For the trips that are not travelable using the Supercharging network, I assume the household uses
conventional vehicles (e.g. other vehicles the household owns or a rented car).

56The Alternative Fuels Data Center calculates a national average of 11,435 pounds of CO2 equivalent
produced by a gasoline vehicle per year and 3,932 pounds by a BEV per year using an average annual ve-
hicle miles driven of 11,824 miles, which converts to 0.97 pound per mile for gasoline cars and 0.33 pound
per mile for a BEV. See https://afdc.energy.gov/vehicles/electric emissions sources.html.
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Table 7: Effect Decomposition of 20% Tesla Purchase Subsidy Change on Lifetime Tesla
Long-distance Miles (in Million)

2017-2020 total 2017 2018 2019 2020

Direct effect 6,245.2 312.8 1,830.4 2,369.6 1,732.4

Total indirect effect 828.6 15.4 325.0 262.4 225.9

Indirect effect on sales 117.5 4.6 53.1 38.2 21.6

Driving pattern for Tesla owners 228.7 9.5 10.0 44.4 164.8

Highway travelability 482.4 1.2 261.9 179.8 39.5

Note: This table presents the increases in long-distance miles traveled by Tesla vehicles by in-

creasing the Tesla purchase subsidy from 80% of the actual levels to the actual levels from 2017

to 2020. The direct effect captures the increases in Tesla vehicles on the road due to lower effec-

tive prices, and the indirect effect is any additional effect caused by equilibrium adjustments to

Tesla’s Supercharging network. The indirect effect consists of three parts: (a) more Tesla vehi-

cles are purchased due to a more extensive Supercharging network, (b) the composition of Tesla

drivers changes - they tend to be those with more driving needs now, and (c) more routes can be

travelable with a Tesla vehicle with a better network. Columns 3-6 show the lifetime impact of the

change in subsidy in 2017-2020 respectively, and Column 2 shows the overall impact of the 4 years

of change combined.

equivalently $159 million and $21 million of social value. For any work studying the effects of

EVs on emissions that ignores the fast charging network and how consumers drive their EVs,

the effects on emissions reduction through changing fast charging network will be wrongly

omitted, and in this case, this leads to not counting $21 million worth of social value achieved

by a 20% change in Tesla purchase subsidy in 4 years.

Heterogeneous stimulating effects on Supercharging network I also evaluate the

differential effects of the change in the purchase subsidy on different parts of the Supercharg-

ing network. The stimulating effect of the subsidy on fast charging is larger for community

charging stations than for highway stations - the investments in 26% of county locations

and 12% of highway locations are accelerated, and the difference in the fractions is statisti-

cally significant. Among the locations that experience investment acceleration, the average

investment timing advances by 1.44 years for counties and 1.2 years for highway segments.

It implies that if the government aims at developing an extensive network of highway fast

charging which is at least as convenient as community charging, additional policy supports
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that target highway charging are needed, which is consistent with the recent policy focus on

subsidizing highway fast charging infrastructure.

Finally, the spatial variations of the effect on the network is evaluated. Since the number

of locations in the sample during this period is small and it is hard to distinguish real patterns

from idiosyncratic errors using this small sample, I zoom out to all the possible locations in

the US (3106 counties and 112 highway segments), and calculate the immediate changes to

the marginal profit of covering each location with and without the change in the subsidy.

That is, I hold fixed the network as observed except for one location of interest, and calculate

Tesla’s values with and without covering that location, whose difference gives the marginal

value of covering that location. This marginal value is calculated twice, at the two different

levels of subsidy. The change in the marginal value captures the immediate change in Tesla’s

investment incentives following the policy change, as shown in Figure 5.

Figure 5 shows that the purchase subsidy has the most stimulating effect on Tesla Super-

charging stations mostly on the west coast and in the northeast. Supercharging development

in the following states benefits the most from the purchase subsidy: California, Colorado,

Connecticut, Florida, Massachusetts, New York, Oregon and Washington. A regression

analysis is conducted to understand what location characteristics are associated with more

stimulating effects, and the results are shown in Table 8. Segments and counties that are

more developed benefit more: locations with higher income and larger pre-period EV adop-

tion, more traveled segments and larger counties enjoy more stimulating effect. It implies

that with the same level of purchase subsidy for all consumers, disadvantaged areas will be

further left behind due to lacking the incentives for fast charging network development. If

the government wants to stimulate EV development in disadvantaged and underserved areas,

they need to be subsidized more than developed areas (for example extra EV purchase sub-

sidies to low-income households or extra charging infrastructure subsidies in disadvantaged

areas).
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Figure 5: Immediate Changes in Tesla’s Investment Incentives

(a) Highway locations

(b) County locations

Note: The two graphs above show the immediate changes in marginal profit of covering each lo-

cation in 2020 where Tesla purchase subsidy increases from 80% of the actual levels to the actual

levels. That is, holding everything at the 2020 level (demand and coverage status of other loca-

tions in particular), the marginal profit of a location under a given policy environment is the dif-

ference in profit from Tesla car sales in 2020 between covering and not covering the location un-

der the given policy environment. The changes in marginal profit captures the effect of the 20%

subsidy change on Tesla’s investment incentives and tendencies. Darker color means the subsidy

has larger stimulating effects.
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Table 8: Strength of the Subsidy Stimulating Effect on Supercharging Network

Variables Segments Counties

Constant -468.5*** -8.152***

(163) (1.55)

Median income (in thousand dollars) 4.2265** 0.0445**

(2.084) (0.020)

Pre-period EV adoption (%) 1003*** 22.95***

(128) (1.42)

Traffic volume (in thousand trips) 0.0201***

(0.003)

County size (in thousand households) 0.1167***

(0.002)

Number of observations 112 3106

Note: This table shows the regression results of the immediate

changes in marginal profits of covering a location on various loca-

tion characteristics. The endogenous variable is as defined in the note

of Figure 5 (in thousand). The exogenous variables are the median

household income in the county/in nearby counties for a segment, the

2012-2016 EV penetration rates in the county/in nearby counties for

a segment, the annual number of trips going through the segment and

the number of households in the county.

*p<0.1; **p<0.05; ***p<0.01.

9. Conclusion

This paper studies how fast charging networks affect BEV sales and how Tesla expands

its Supercharging network, and understands how the Supercharging network responds to

changes in EV purchase subsidies. I build and estimate a random coefficient logit model of

demand and a model of oligopolistic competition in pricing, which are subsequently taken

into a dynamic investment model in Tesla’s Supercharging network. The cost parameters

in the investment model are set-identified using the revealed preference approach. The

counterfactual analysis investigates the effects of a 20% change in EV purchase subsidy on

the Supercharging network, consumer surplus and emissions. The results show that purchase
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subsidy could stimulate Tesla’s investments in fast charging both within communities and

along highway corridors. The stimulating effects are larger for counties, and more developed

areas. It implies that if the government wants to develop fast charging along highways

and in disadvantaged areas, extra subsidies targeting low-income households or charging

infrastructure in those locations might be necessary. Moreover, through the expansionary

effects on the fast charging network, the purchase subsidy achieves additional consumer

welfare gains and emissions reductions; any work that ignores the fast charging channel is

likely to underestimate the benefits.

The main contributions of this paper are twofold. It contributes to the understanding of

preferences for and the deployment of EV fast charging. This paper studies the EV industry

with detailed modeling on fast charging both on the demand side and on the investment side.

Two types of fast charging use cases are incorporated - charging during daily activities around

where drivers live and during long-distance trips that are far from home, and two types of

fast charging stations are distinguished - within communities and along highway corridors.

Consumers are allowed to have heterogeneous values on the charging network because they

reside at different places and have idiosyncratic travel patterns. The model provides a rich

yet manageable way to think about how fast charging stations are used and deployed in real

world. To my knowledge, this is the first paper to allow for a high-dimensional national fast

charging network and a location-specific taste for charging. Moreover, this paper is one of

the few papers in the economics literature to provide a cost estimate of the fast charging

stations and the first to estimate that in a dynamic framework. The dynamic approach is

preferred to the static one in that it recognizes that investments are irreversible and have

long-term profit implications, avoiding biased estimates which are likely to arise in static

models.

Methodology-wise, this paper builds on the economy of density literature (Holmes (2011)

and Houde et al. (forthcoming)) and uses a new method to calculate an approximation

to the optimal network in the dynamic setting in the counterfactual analysis, while the
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existing approach looks at static snapshots in the development process and solves for an

approximation to the optimal static solution.

This paper has two major limitations. First, the current investment model focuses on

Tesla and takes the fast charging stations of the other standards as exogenous and fixed.

These charging station companies might well respond to changes in Tesla’s charging network

and/or policy changes. A fully-fledged model would incorporate endogenous roll-outs of

CCS and CHAdeMO stations, which might pose a challenge for computation complexity.

Another limitation is that some realistic features of charging stations are abstracted away

from the model, including charging station utilization rates and congestions, optimal station

size, charging fee structure design and profits from charging activities. New datasets on

those topics are needed to develop an all-round understanding on EV fast charging, which

are left for future research. I plan to use the framework presented in this paper to compare

the effects on fast charging network development under various policies, including subsidies

on charging infrastructure, ZEV mandates, full compatibility among charging standards, and

other composite policy designs.
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Appendix A. Details on moment inequalities for county-segment

swaps

This appendix describes the identification of λ in the two cases where the coverage years of

a county and a segment are swapped.

Switch an early-covered county and a late-covered segment. The inequality is

Y c,h′ − λ1Xc,h′

1 − λ2Xc,h′

2 − λ3Xc,h′

3 − λ4Xc,h′

4 + εc,h
′ ≥ 0, (A1)

where Y c,h′ is the discounted difference in profit flows from car sales net of rents between

the actual and alternative plan:

Y c,h′ =
t′−1∑
τ=t

ρτ
[
π̂τ
(
Nτ (a

o)
)
− π̂τ

(
Nτ (a

c,h′)
)]
− (ρt − ρt′) · (rentc − renth′), (A2)

Xc,h′

1 is the change in discount factor (since county c is covered in different years):

Xc,h′

1 = (ρt − ρt′), (A3)

Xc,h′

2 is the discounted difference in the number of households for county c:

Xc,h′

2 = (ρt − ρt′) ·Mc, (A4)

Xc,h′

3 is the discounted difference in the number of Supercharging stations for segment h′:

Xc,h′

3 = (ρt − ρt′) · (−#stationsh′), (A5)

Xc,h′

4 is the discounted difference in the number of annual trips for segment h′:

Xc,h′

4 = (ρt − ρt′) · (−#tripsh′). (A6)
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(λ1, λ2, λ3, λ4) will be jointly identified in this case, and the identified set (using only

swaps of this kind) will be a region in R4. The moment inequality conditions are

E[Zc,h′ ·Y c,h′ ]−λ1 ·E[Zc,h′ ·Xc,h′

1 ]−λ2 ·E[Zc,h′ ·Xc,h′

2 ]−λ3 ·E[Zc,h′ ·Xc,h′

3 ]−λ4 ·E[Zc,h′ ·Xc,h′

4 ] ≥ 0.

(A7)

Switch an early-covered segment a late-covered county. The inequality is

Y h,c′ − λ1Xh,c′

1 − λ2Xh,c′

2 − λ3Xh,c′

3 − λ4Xh,c′

4 + εh,c
′ ≥ 0, (A8)

where Y h,c′ is the discounted difference in profit flows from car sales net of rents between

the actual and alternative plan:

Y h,c′ =
t′−1∑
τ=t

ρτ
[
π̂τ
(
Nτ (a

o)
)
− π̂τ

(
Nτ (a

h,c′)
)]
− (ρt − ρt′) · (renth − rentc′), (A9)

Xh,c′

1 is the change in discount factor (since county c′ is covered in different years):

Xh,c′

1 = (ρt − ρt′) · (−1), (A10)

Xh,c′

2 is the discounted difference in the number of households for county c′:

Xh,c′

2 = (ρt − ρt′) · (−Mc′), (A11)

Xh,c′

3 is the discounted difference in the number of Supercharging stations for segment h:

Xh,c′

3 = (ρt − ρt′) ·#stationsh, (A12)

Xh,c′

4 is the discounted difference in the number of annual trips for segment h:

Xh,c′

4 = (ρt − ρt′) ·#tripsh. (A13)
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(λ1, λ2, λ3, λ4) will be jointly identified in this case, and the identified set (using only

swaps of this kind) will be a region in R4. The moment inequality conditions are

E[Zc,h′ ·Y c,h′ ]−λ1 ·E[Zc,h′ ·Xc,h′

1 ]−λ2 ·E[Zc,h′ ·Xc,h′

2 ]−λ3 ·E[Zc,h′ ·Xc,h′

3 ]−λ4 ·E[Zc,h′ ·Xc,h′

4 ] ≥ 0.

(A14)

Appendix B. Definition of basic instruments

Table B1 tabulates the 50 basic instruments, i.e. groups, used to form the moment inequal-

ities in Equation (28).

Appendix C. Calculate the confidence region for the estimated

set of λ

This appendix describes how to obtain the 95% confidence region for the identified set of λ.

Recall the identified set Λ is characterized by Equation (29):

Λ =
{
λ ∈ R4 :

( 1

#dev

∑
(l,l′)

Z l,l′

g Y l,l′
)
−

4∑
k=1

λk
( 1

#dev

∑
(l,l′)

Z l,l′

g X l,l′

k

)
≥ 0, for all g

}
, (29)

where g is the index for instruments. For notational simplicity, I write deviation 1
#dev

∑
(l,l′)

Z l,l′
g Y l,l′

as w̄0g and 1
#dev

∑
(l,l′)

Z l,l′
g X l,l′

k as w̄kg in this appendix. Now Equation (29) becomes

Λ =
{
λ ∈ R4 : w̄0g − λ1w̄1g − λ2w̄2g − λ3w̄3g − λ4w̄4g ≥ 0, for all g

}
. (C15)

Stack w̄0g across instruments to form vector w̄0 = {w̄0g}g. Do the same for w̄1, w̄2, w̄3 and

w̄4. Write w̄ = (w̄0, w̄1, w̄2, w̄3, w̄4) in a long vector format.

To construct the confidence region, an intermediate step is to obtain the joint distribution

of w̄. From the Central Limit Theorem (for dependent random variables), the joint distribu-
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Table B1: Definition of Groups

Panel A: Location class definitions

County class I
Define county classes I1, I2, I3 and I4 by Mc being in

(0, 105), [105, 5× 105), [5× 105, 106) or [106,∞).

County class II
Define county classes II1, II2, II3 and II4 by the quartiles of Mc,

with II1 being the bottom quartile and II4 being the top quartile.

Segment class III
Define segment classes III1, III2, III3 and III4 by #stationsh being in

{1, 2, 3}, {4}, {5, 6} or {7, 8, 9, 10, 11, 12}.

Segment class IV
Define segment classes IV1, IV2, IV3 and IV4 by the quartiles of #tripsh,

with IV1 being the bottom quartile and IV4 being the top quartile.

Panel B: Swap grouping definitions

Swap group category Group counts Description

Swap Type 1 - Switch two counties:

County size increasing 3 c in class Ii, c′ in class I(i+ 1) for i = 1, 2, 3

County size decreasing 3 c in class I(i+ 1), c′ in class Ii for i = 1, 2, 3

Swap Type 2 - Switch two segments:

Segment stations increasing 3 h in class IIIi, h in class III(i+ 1) for i = 1, 2, 3

Segment stations decreasing 3 h in class III(i+ 1), h in class IIIi for i = 1, 2, 3

Segment trips increasing 3 h in class IVi, h in class IV(i+ 1) for i = 1, 2, 3

Segment trips decreasing 3 h in class IV(i+ 1), h in class IVi for i = 1, 2, 3

Swap Type 3 - Switch early-covered county and late-covered segment:

Based on county size 4 c in class IIi for i = 1, 2, 3, 4

Based on segment stations 4 h in class IIIi for i = 1, 2, 3, 4

Based on segment trips 4 h in class IVi for i = 1, 2, 3, 4

Based on year difference 4 t− t = 1, t− t = 2, t− t = 3, or t− t ≥ 4

Swap Type 4 - Switch early-covered segment and late-covered county:

Based on county size 4 c in class IIi for i = 1, 2, 3, 4

Based on segment stations 4 h in class IIIi for i = 1, 2, 3, 4

Based on segment trips 4 h in class IVi for i = 1, 2, 3, 4

Based on year difference 4 t− t = 1, t− t = 2, t− t = 3, or t− t ≥ 4
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tion of w̄ can be approximated by a normal distribution with mean and variance-covariance

matrix to be estimated. The difficulty lying in the estimation of the variance-covariance

matrix is that the deviations (l, l′) are not independent because some of them share the

same location. In fact, there are 295 locations involved in the 36,546 deviations. To cor-

rect for the dependence across deviations, I use a subsampling procedure to estimate the

variance-covariance matrix, following Holmes (2011).

More specifically, for each simulation s, I randomly select 1
3

of county and segment

locations in my sample (the location subsample), and look at the subsample of deviations

that involve only locations in the location subsample. I then calculate w̄(s) in this deviation

subsample. The subsamples are drawn with replacement S = 1, 000 times, and the w̄(s)

draws are used to form the variance-covariance matrix in the subsample:

var-cov(w̄)sub =
1

S − 1

∑
s

(w̄(s) − ¯̄w)(w̄(s) − ¯̄w)′, (C16)

where ¯̄w = 1
S

∑
s w̄

(s) is the mean of w̄(s) across subsamples.

The variance-covariance matrix of the whole sample is57

var-cov(w̄) =
1

3
· var-cov(w̄)sub. (C17)

Next, I draw 1,000 times from the normal distribution with mean w̄ and variance-

covariance var-cov(w̄) and calculate the identified set for each draw. The 95% confidence

region consists of points that are in the identified set at least 95% of the times. The extreme

values of the 95% confidence region in each dimension are presented in Table 5.

57Holmes (2011) shows the rate of convergence is a function of the number of locations, not the number
of deviations.
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Appendix D. Full characterization of estimated set of λ

The estimated set for λ is a convex polygon and can be characterized by its vertices. Table

D2 shows the coordinates of these vertices for the three sets of instruments respectively.
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Table D2: Vertex coordinates of estimated set of λ

Vertex id λ1 λ2 λ3 λ4

Basic instruments

1 3,867,022 8.630 1,439,531 0.247

2 4,789,789 8.630 1,634,548 0.471

3 3,811,304 8.630 1,113,661 0.613

4 3,364,854 11.584 1,350,334 0.408

5 3,833,958 11.584 1,449,474 0.521

6 3,336,529 11.584 1,184,672 0.594

7 3,829,856 8.630 1,424,848 0.255

8 2,818,896 8.630 953,127 0.657

9 3,219,940 8.630 953,127 0.657

10 2,613,177 11.584 1,053,361 0.572

11 2,398,361 11.584 953,127 0.657

12 2,483,577 11.584 953,127 0.657

Basic + Order-1 instruments

1 3,830,729 8.630 1,405,294 0.290

2 3,841,378 8.630 1,134,391 0.607

3 3,326,225 11.584 1,320,348 0.439

4 3,731,681 11.584 1,407,502 0.533

5 3,331,374 11.584 1,189,354 0.592

6 4,665,594 8.630 1,584,749 0.483

7 4,412,981 9.437 1,536,872 0.497

8 4,579,940 8.630 1,536,872 0.497

9 4,527,982 8.630 1,536,872 0.497

10 3,683,592 8.630 1,347,533 0.321

11 2,833,469 8.630 953,127 0.657

12 3,173,468 8.630 953,127 0.657

13 2,533,313 11.584 1,009,080 0.609

14 2,412,708 11.584 953,127 0.657

15 2,460,943 11.584 953,127 0.657

Basic + Order-1 + Order-2 instruments

1 3,827,127 8.630 1,384,958 0.323

2 3,859,728 8.630 1,151,131 0.603

3 3,290,936 11.584 1,292,448 0.468

4 3,626,307 11.584 1,364,826 0.544

5 3,305,496 11.584 1,188,022 0.593

6 4,567,251 8.630 1,544,688 0.492

7 4,205,438 9.787 1,475,689 0.514

8 4,448,640 8.630 1,475,689 0.514

9 4,370,262 8.630 1,475,689 0.514

10 3,547,602 8.630 1,275,911 0.382

11 2,847,917 8.630 953,127 0.657

12 3,129,934 8.630 953,127 0.657

13 2,458,690 11.584 967,777 0.645

14 2,426,933 11.584 953,127 0.657

15 2,439,733 11.584 953,127 0.657
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Appendix E. Counterfactual approach: obtaining the equilibrium

network

The appendix describes the method to obtain the equilibrium network in a new environment.

To be consistent with the counterfactual analysis in the main text, I describe the case where

the environment and the network are unchanged before 2017 and only change in 2017 and

onward.

The counterfactual scenario in the main text is a 20% reduction in purchase subsidy com-

pared with the actual scenario, and it is shown that the reduction causes delay in investment

timing. That is, a subset of locations actually covered during 2017-2020 will be covered in

the counterfactual scenario. Hence, the candidate set of locations that might be covered in

the counterfactual can be taken as the locations in the actual network. In other cases where

more locations are expected to be covered, a candidate set of locations needs to be specified.

It usually includes locations covered in an extended period or locations of competitors.

With the candidate set of locations ready, we can now proceed with the algorithm.

Start with an initial investment plan a(0) (I take it to be the actual plan). For each

location, find the optimal coverage year (from 2017-2021) while the other locations are

covered according to a(0).58 Denote the plan formed by the optimal coverage year of each

location by a(1). Now, for each location, find the optimal coverage year while the other

locations are covered according to a(1). Obtain the updated plan a(2). Repeat this process

until convergence, i.e. a(r+1) = a(r). The converged plan a(r) is the equilibrium investment

plan.

Note that the obtained investment plan is an approximation to the optimal plan in that

58Calculating the value difference between 2021 and any year before only requires the profit streams
up to 2020 and hence it can be done with in-sample information. If the optimal coverage year is 2021,
it means that covering before the end of the data period is definitely not optimal. On the other hand,
if the optimal coverage year is not 2021 (say it is 2018), it does not mean covering in 2018 is necessarily
better than any other year in the future. A sufficient condition for 2018 to be the exact optimal is that the
marginal profit of covering that location in any year after 2020 is at least as high as that in 2020, which is
likely to hold given the growing popularity of EVs. If the optimal coverage year is 2021, it generally means
2021 or beyond, or not covered before the end of the period of interest.
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any perturbations to the plan involving a single location are not profitable; joint perturba-

tions of multiple locations might be profitable. It might happen when multiple locations

are complements - an example is when sales increase substantially when a county and the

neighboring highway are both covered.
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