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ABSTRACT

Building an accessible and reliable electric vehicle (EV) fast charging network
has been a policy focus in recent years. This paper studies the role fast charging
has on EV adoption and how Tesla, as the largest firm in this industry, opti-
mizes its investments in the charging network spatially and temporally. 1 build
and estimate a static model of vehicle demand and automakers’ competiton in
prices, and a dynamic model of Tesla’s investment decision on its Supercharging
network. The demand model features a rich structure on consumer preferences
for the fast charging network by incorporating heterogeneous tastes for local and
along-highway charging based on consumers’ home locations and long-distance
travel patterns. On the investment side, Tesla maximizes the present discounted
value of all profit streams net of investment costs by choosing its Supercharging
network at a very fine level of geographic details. A revealed preference approach
set-identifies the cost parameters. The results show that consumers value both
types of charging, and that the effects are similar in magnitudes when her lo-
cal community is covered or when all highways she travels on are covered, both
equivalent to a 4 percent drop in vehicle prices. The estimated median lifetime
cost of a community Supercharging station is between $4.1 million and $6 million,
and between $2.03 million and $2.5 million for a highway station. The estimated
model is used to study the effects of government EV puchase rebates. The coun-
terfactual results show that the purchase rebates have an expansionary effect on
Tesla’s network almost everywhere, and the positive effect is larger along high-
ways than within communities. Policies that promote EV purchase in areas with
lower EV adoption rates can be an effective tool to incentivize deployment of fast
charging stations along highway corridors.

*I am grateful to my PhD advisors Elena Krasnokutskaya, Yingyao Hu and Andrew Ching for their
guidance and support. I thank Jim Gillispie and JHU Data Services for their help and financial support in
the data acquisition process. All errors are my own.



1. Introduction

The electric vehicle (EV) industry has grown substantially in the last decade, and has been
increasingly important from policymakers’ perspective to reduce emissions of air pollutants
and greenhouse gases. Policymakers have realized that enabling long-distance travel with
EVs is crucial in achieving that goal, because emissions are determined by vehicle miles
driven and a long-distance trip contributes more to that than a short one. Hence, a reliable
national network of fast charging stations along the US highway system is needed, and a lot
of government programs and subsidies are devoted to this purposeﬂ

In the US EV industry, Tesla is the largest battery EV manufacturer and is also famous
for its proprietary fast charging network (called Supercharging stations or Superchargers).
This paper investigates consumers’ preferences for EV fast charging network and studies the
investments in it through the lens of Tesla. To that end, I ask three research questions. First,
how does the accessibility of EV fast charging affect consumers’ preferences for battery EVs?
Second, what affects Tesla’s incentives in investing in various locations of its Supercharging
network? Finally, what are the effects of various government policies on different locations
in the Supercharging network and other outcomes of interest, and in particular, how can
policymakers incentivize firms to invest in a national network of fast charging stations along
highway corridors?

To address those questions, I develop a model of consumer demand and firms’ competition
in prices that is able to predict firms’ profits for any given charging network configuration.
Those profit predictions are then brought to a model of Tesla’s investment decision on the
expansion of the Supercharging network, which takes into account automotive profits and
investment costs. Also incorporated throughout the model are existing policies, which can
be turned off or modified to calculate policy effects.

I model consumers’ demand for individual conventional and green vehicles using a ran-

Thttps://highways.dot.gov/newsroom/president-biden-usdot-and-usdoe-announce-5-billion-over-five-
years-national-ev-charging.



dom coefficient logit framework, while incorporating a rich structure on the tastes for the fast
charging network. First, consumers value the network in two different use cases: they value
stations within their community for charging during daily activities; they also value stations
along the highway system for long-distance trips. Second, the values they attach to the high-
way charging network are idiosyncratic and depend on their long-distance travel patterns.
This structural model of consumers’ heterogeneous preferences for the fast charging network
is made possible by utilizing an extensive dataset on simulated US household long-distance
trips, whose routes are obtained from OpenStreetMap. Observing the consumer demand
and the current charging network, car manufacturers engage in a Bertrand competition of
vehicle prices to maximize static profits.

The demand and pricing model will be jointly estimated using Generalized Method of
Moments. In addition to the orthogonality conditions derived from the demand and marginal
cost instruments, I also include a micromoment that matches the observed and model pre-
dicted popularity of EV models at the county level to better identify parameters on prefer-
ences for fast charging.

On the investment side, I maintain a very fine level of geographic details of highway and
county locations, including more than 100 segments of the Primary Interstate Highways and
more than 3000 counties in the contiguous US. Tesla chooses where to build Supercharging
stations by maximizing the present discounted value of all automotive profit streams net of
the Supercharger investment costs. The investment costs are modeled with several compo-
nents: the cost of covering a county consists of a constant fixed cost, an estimated lifetime
rent costs, costs of larger station sizes proxied by the county population and an unobserved
cost component; the cost of covering a highway segment consists of a constant fixed cost for
every station, an estimated lifetime rent costs, costs of larger station sizes proxied by the
annual number of trips going through the segment and an unobserved cost component.

The optimal investment plan is the outcome of three tradeoffs. The first tradeoff is be-

tween covering a more populous county with higher investment costs and higher incremental



automotive profits and covering a smaller county with lower costs and lower marginal profits.
The second tradeoff is the highway analogy of the first one - covering a heavily traveled high-
way with higher investment costs and higher marginal profits versus a less traveled highway
with lower costs and lower marginal profits. The final tradeoff is between a county and a
highway: covering a county could be very effective in promoting sales among local residents
while have little impacts on consumers elsewhere; on the other hand, covering a highway
might have a smaller effect on individual consumers but might reach more people.

I use a revealed preference approach to infer the magnitudes on the two sides of the
tradeoffs, and recover the investment cost parameters using a moment inequality approach,
following [Holmes| (2011]) and [Houde et al.| (2022). I observe the actual plan that Tesla chose,
and consider alternative plans that deviate slightly from the actual plan. For example, if
the actual plan covers a county 2 years before another county, the proposed alternative
plan could reverse this order while keeping the rest of the plan unchanged, reflecting the
first tradeoff. Those alternative plans are the ones Tesla could have chosen but decided not
to, which implies the value of the actual plan should be higher than the alternative ones.
After subtracting the equilibrium automotive profits under the alternative network (with
adjusting equilibrium prices), I find values of the cost parameters that render the observed
plan more profitable than other plans. The inequalities derived from the revealed preference
approach are linear inequalities in the cost parameters, and as a result, the (non-empty) set
of parameters that satisfy all inequalities constitutes a connected and convex polygon, which
will be fully characterized by its vertices.

The estimation results confirm that the accessibility of the fast charging network has
a significantly positive effect on EV purchase, and both the stations within communities
and stations along highway corridors are valued. In particular, the coefficients on local fast
charging and highway fast charging are roughly equal, i.e. building a fast charging station in
a consumer’s local area has a similar effect to covering highways on all of her long-distance

travel routes. Together with the estimated price coefficients, it is implied that covering the



local community or covering all long-distance travel routes of a consumer is equivalent to a
4 percent reduction in vehicle prices for an average consumer, or $2,256, evaluated at the
average effective price of a Tesla vehicle.

The estimated set of the investment cost parameters implies the median cost of a com-
munity Supercharging station is between $4.1 million and $6 million, and the median cost of
a highway Supercharging station is between $2.03 million and $2.5 million. These estimates
are the present discounted value of lifetime costs associated with a station, including the
initial investment and all future operating and maintenance costs, and are consistent with
engineering estimates. Note that the future costs constitute a siginificant proportion of the
total costs (around 80%), highlighting that future costs are within Tesla’s consideration when
making investments. The county population and highway utilization also increase costs for
community stations and highway stations respectively, indicating stations with more chargers
are required for these locations and costs increase accordingly.

I then use the estimated model to evaluate the effects of several policies on the rollout
of the Supercharging network. To do so, I need to solve the optimal investment plan for
Tesla in the new policy environments. Since dynamics are important in Tesla’s problem,
I propose a new approach to calculate an approximation to the optimal network in the
dynamic setting, advancing the static approximation approach in previous literature. I
apply this approach to study the effects of the EV purchase rebate programs on investment
timing and geographical distribution, and find that the purchase rebates on Tesla vehicles
have a positive effect on Tesla’s incentive to expand its network almost everywhere, both
within communities and along highway corridors. The only exception is the communities
in California, the largest state in EV adoption, where Supercharging stations are deployed
regardless of policy supports. Moreover, the stimulating effects are heterogeneous, and larger
for highway locations than for community locations. This is because more markets have
become attractive to Tesla as more consumers in those markets are willing to buy EVs

under the rebates, and covering highway locations is an effective way to encourage sales in



multiple markets. This suggests that the universal EV purchase rebates can be an effective
tool to promote fast charging along highway corridors, and other policies that promote EV
sales in areas with lower EV adoption rates might also be worth considering for the same
rationale. I plan to use the same framework to evaluate other EV policies such as EV
charging infrastructure subsidies and a universal fast charging standard.

This paper relates to three strands of literature. First, there is a fast-growing literature
on the EV market and the effects of government policies (Li| (2019)), Li et al.| (2017)), Springel
(2021)), Sinyashin| (2021)), Holland et al.| (2016)), DeShazo et al. (2017) and Xing et al.| (2021))).
I contribute to this literature by providing a rich and detailed model of EV fast charging
which incorporates heterogeneous consumer preferences for fast charging and Tesla’s dynamic
investment decision in a high dimensional location space. The closest to this paper are |Li
(2019) and |Sinyashin| (2021)). The main differences are Li (2019) assumes consumers from any
geographic markets have identical value for the highway charging network and she has a static
model of charging station investments; [Sinyashin| (2021)) models consumer inconvenience costs
of charging, which depends on the exogenous charging infrastructure within a local market
and does not consider highway charging network. To my knowledge, this paper is also the
first to provide cost estimates of charging infrastructure under a dynamic framework in the
economics literature.

Second, this paper also contributes to the economy of density lituerature (Holmes (2011))
and Houde et al. (2022)). A main difficulty in this literature is that solving for the exact
solution to the optimal network is impossible due to the fine level of geographic details,
which poses a challenge in counterfactual analyses. I employ a similar modeling approach
and partial identification strategy on Tesla’s investment problem, and propose and apply a
new approach to solve for an approximate solution in the dynamic setting, compared to an
approximate solution in a simplified static environment in Houde et al.| (2022).

Finally, this paper relates to the literature on endogenous choices of product character-

istics (Fan| (2013)), [Sweeting (2013]), [Wollmann| (2018)), |[Eizenberg| (2014) and |Crawford et al.



(2015)) by modeling the endogeous choice of Tesla’s Supercharging network and recover-
ing the costs associated with improving product characteristics using a revealed preference
approach.

The rest of this paper is organized as follows. Section [2| gives an overview of the EV
industry, introduces different types of EV and EV charging, and summarizes relevant gov-
ernment policies. Section [3| introduces the datasets. Section [4] lays out the model. Section
and Section [0] describe the identification and estimation strategies for the demand and
pricing model, and Tesla’s investment model respectively. The subsequent section presents
the estimation results. The penultimate section conducts the counterfactual analysis and

the final section concludes.

2. Institutional details

2.1 Overview of the EV market

Since the introduction of Nissan LEAF and Chevrolet Volt in December 2010, the US EV
market has grown exponentially in the last decade. In 2012, around 100,000 vehicles with
an electric battery were sold in contiguous US and this number increased five-fold, reaching
508,174 units in 2020. Among them, plug-in hybrid EVs (PHEVs), which have both a
rechargeable battery pack and a gasoline tank as a backup, made up for 90% of EV sales in
2012 but only half the sales by 2020. The rising EV type has been the battery EVs (BEVs),
running solely on electricity stored in their battery packs, whose sales soared by almost 20
times, from 13,021 units in 2012 to 250,252 units in 2020. Figure [I| shows the growth of the
EV market from 2012-2020.

Tesla is a major BEV manufacturer in the US. It introduced the flagship sedan Model S in
mid 2012 and subsequently the SUV Model X in 2015, and strengthened its leading position
in the BEV market by bringing up its most popular Model 3, selling an unprecedented

358,107 units in 3.5 years since its first delivery in mid 2017. This number is more than the



Figure 1: EV Market Growth, 2012-2020
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sales of all non-Tesla BEVs from 2012-2020 combined. The four Tesla models (Model 3, S,
X and Y) accounted for two-thirds of total BEV sales. Other major BEV models include
Nissan LEAF, Chevrolet Bolt, Fiat 500e, Volkswagen e-Golf, among others. Table [I| shows

the best-selling BEV models and their sales numbers.

Table 1: Battery Electric Vehicle Sales

Make Model Sales  Share of total BEV sales First year of sales
Tesla Model 3 358,107 34.5% 2017
Tesla Model S 168,832 16.3% 2012
Nissan LEAF 136,682 13.2% 2011
Tesla Model X 91,005 8.8% 2015
Chevrolet Bolt 77,222 7.4% 2016
Tesla Model Y 68,026 6.6% 2020
Fiat 500e 26,031 2.5% 2013
Volkswagen  e-Golf 18,860 1.8% 2014
BMW i3 12,076 1.2% 2014
Audi e-tron 11,888 1.1% 2019
Other BEV models 69,391 6.7% NA

Comparing to the US automobile industry as a whole, EVs accounted for 3.8% of all
light-duty passenger cars and trucks sold in 2020. This share may still seem small, but this

cannot mask the importance of EVs to the US economy. Industry experts project the market



share of EVs will reach 30% by 2030, and 45% by 2035.E| The federal and local governments
have been playing a significant role in this issue. For example, the Biden-Harris Electric
Vehicle Charging Action plan has set a target of 50% of electric vehicle sale shares in the
US by 2030E| California, the largest state in EV adoption, has an objective to achieve five
million zero-emission vehicles (ZEVs) on the road by 2030 and requires that all new cars and
passenger trucks sold in California be ZEVs by 2035E| Washington state has set a target
that all vehicles of model year 2030 or later sold, purchased or registered in the state be

electric, making it the state with the earliest all-electric target in the nationﬁ

2.2 Batteries and charging

Battery range is the distance a fully charged EV can travel. It varies with EV types, models
and over time. PHEVs tend to have a smaller battery range, since they can run on their
internal combustion engines when the battery is depleted. The median battery range of a
PHEV is about 20 miles, making it best for daily commute and short trips. BEVs tend to
have larger batteries, with a median of 111 miles. The battery capacities also vary greatly
across BEV models and over time. Tesla stands out for its battery technology and long-range
vehicles. Its 2020 Model X can travel 351 miles on a single charge, and all of Teslas models
can surpass 300 miles of range with the basic version or the long-range version. On the other
hand, models like Fiat 500e, Chevrolet Spark EV and Honda Fit EV can only go less than
100 miles.

EV ranges have also been rising steadily over time. Figure [2| plots the average EV range
from 2012 to 2020. The average BEV range increased from 136 miles in 2012, to 290 miles in

2020 for Tesla models, and from 89 miles in 2012, to 159 miles in 2020 for non-Tesla models.

Zhttps://www.statista.com/statistics /744946 /us-electric-vehicle-market-growth/ and
https://evadoption.com/ev-sales/ev-sales-forecasts/.

3https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13 /fact-sheet-the-biden-
harris-electric-vehicle-charging-action-plan/.

4https:/ /www.cpuc.ca.gov/industries-and-topics/electrical-energy /infrastructure /transportation-
electrification.

Shttps://electrek.co/2022/03 /25 /washington-passes-bill-targeting-all-electric-car-sales-by-2030-for-real-
this-time/.



Behind this increase is the improvement in battery technologies and declining battery costs.
The estimated lithium-ion battery pack cost per kwh was $712 in 2012, and dropped to $137
in QOQOH This decline was significant, since battery costs accounted for more than 30% of

the selling price of BEVs on average[]

Figure 2: Average EV Battery Range (Miles), 2012-2020
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One of oft-cited reasons why people delay buying EVs, especially in earlier years, is that
they worry the battery will be depleted before reaching the destination or a charging station,
referred to as the “range anxiety”. The improvement in battery ranges has alleviated this
concern, together with the development of a robust and reliable charging network. There
are three types of EV charging, level 1, level 2, and direct current fast charging (DC fast
charging, or DCFC). Level 1 charging is the slowest - it can be used with any standard 120-
volt outlet, replenishing between 3 and 5 miles of range per hour. Level 1 charging works
better for PHEVs than for BEVs because of its slow speed and is mostly seen in residential
areas. Level 2 charging adds an average of 25 miles of range per hour and requires installing

a charger and plugging into a 240-volt outlet. It can fully charge an average BEV in about

Shttps://www.statista.com/statistics /883118 /global-lithium-ion-battery-pack-costs//.
"https://www.instituteforenergyresearch.org/renewable/electric-vehicle-battery-costs-soar/ and own
calculation.



8 hours, making it best for overnight charging. It can be seen at a wide variety of locations,
including homes, workplaces, and public areas like stores and restaurants. All PHEVs and
BEVs except Tesla use the same J1772 connector for Level 2 charging, and all Tesla cars
include an adaptor with the purchase that allows Tesla models to charge using the J1772
connector. In this paper, I assume all EV models can charge at any level 2 charger universally.

DC fast charging is the fastest type of charging, as its name stands. It can provide up to
250 miles of range per hour and can typically charge up to 80% in about 30 minutes. Fast
charging is only available on some BEVs, and there are three incompatible standards, Tesla,
Combined Charging System (CCS), and CHAdeMO. The Tesla DC fast charging stations,
called Tesla Supercharging stations or Superchargers, can only be used for Tesla models.ﬂ
CCS is mostly used among European and American automakers, including BMW, Ford, GM
and Volkswagen. CHAdeMO is commonly seen in Japanese companies, such as Nissan and
Mitsubishiﬂ Most CCS DCFC stations have CHAdeMO DCFC chargers available, and vice
versa. However, Tesla Supercharging stations do not normally have the other two standards
available. Figure [3[ shows the number of DCFC stations in the US by standard.

The main use cases of DC fast charging include topping off the battery for intra-urban
travelers during the day and enabling inter-city long-distance travel through quick rechargers.
These correspond to the two types of locations where DCFC stations are usually built - in
communities and along highway corridors. Since more miles are driven in a long-distance trip
than a daily intra-urban trip, constructing a reliable DCFC network along major highways
has become a recent emphasis by policymakers who try to reduce emissions and combat

climate change. Programs exist in various states allowing the costs of establishing highway

8Tesla Superchargers use the CCS standard in Europe, and allows non-Tesla BEVSs to use in selected
countries. Currently, there are no reliable and widely available adaptors among the three fast charging
standards in the US.

9The BEV models with DC fast charging are: Tesla Model 3, Tesla Model S, Tesla Model X, Tesla
Model Y (Tesla standard); Audi e-tron, BMW i3, Chevrolet Bolt, Chevrolet Spark EV, Ford Focus Elec-
tric, Honda Clarity EV, Hyundai Ioniq EV, Hyundai Kona Electric, Jaguar I-PACE, Kia Niro EV, Kia
Soul EV (since 2019), MINT Cooper Electric, Porsche Taycan, Volkswagen e-Golf (CCS standard); Kia
Soul EV (before 2019), Mitsubishi i-MiEV and Nissan LEAF (CHAdeMO standard).

10



Figure 3: Number of DCFC Stations in the US, 2012-2020
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DCFC stations to be fully or partially subsidized['?] Tesla moved first in deploying a fast
charging network along the highway network - in fact, the first coast-to-coast trip across
the US was completed by a Tesla Model S relying only on the Supercharging network in
January 2014.E Figure |4| shows the maps of Tesla Supercharging stations and non-Tesla
DCFC stations in 2014, 2017 and 2020.

While Tesla Supercharging stations are solely built by the Tesla company, CCS and
CHAdeMO DCFC stations are built by various entities. The ChargePoint Network accounts
for around 30% of non-Tesla DCFC stations, which operates in a decentralized way, like the
“Airbnb” of DCFC charging. Anyone can host a ChargePoint DCFC station at their own
preferred location, set their own charging prices, and enjoy the driver base and maintenance
services ChargePoint provides. Following the ChargePoint Network is non-networked DCFC
stations, accounting for another 25% of non-Tesla DCFC stations. The third place is Electrify

America, which is a not-for-profit organization funded by the Volkswagen Diesel Emissions

10Based on my search on state level charging infrastructure subsidies, most states targeting DCFC sta-
tions (rather than EV charging stations in general) have some form of requirement that the DCFC sta-
tions need to be close to major highways.

Hhttps:/ /www.tesla.com/blog/first-across-us-supercharger.
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Figure 4: Tesla Supercharging stations and Non-Tesla DCFC stations in the US
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Environmental Mitigation TrustsB owning 22% of non-Tesla DCFC stations. The remaining
22% are owned by various charging station companies including eVgo, Blink, Greenlots etc,
each accounted for less than 10%. Given the numerous participants in building non-Tesla
DCFC stations and the not-for-profit nature of some participant, non-Tesla DCFC stations

will be thought of as competitively built in this paper.

2.3 Government involvements

Policymakers realized very early that the EV market is featured by the “chicken and egg”
problem. That is, consumers are only willing to buy EVs if the charging infrastructure is well
developed, and the charging stations are only profitable when EVs are widely adopted. To
solve this dilemma and to speed up EV penetration, federal and state governments have been
very active in this domain and allocated resources on various fronts. On the EV purchase
side, the federal government offered up to $7,500 of federal income tax credits for new BEV
and PHEV purchase since 201OE some state governmentﬂ and utility companies provide
purchase credits as well.

On the charging infrastructure side, state governmentﬂ and utility companies have re-
bate programs of various generosities that help investors recoup the equipment costs. More
recently, the Biden-Harris Administration announced in early 2022 that the National Electric
Vehicle Infrastructure Formula Program will make available nearly $5 billion to help states
build out a network of EV charging stations along designated highway corridors, particularly

along the Interstate Highway System [’ Monetary supports on charging infrastructure usu-

12In 2016, Volkswagen entered into a settlement to partially resolve alleged Clean Air Act violations
by cheating federal emission tests, and agreed to spend $4.7 billion to mitigate pollution and make invest-
ments to support zero-emission vehicle technology, including building a network of fast charging stations.

13The credit phases out when a manufacturer sells 200,000 qualifying vehicles, and Tesla and GM
reached the limit in 2020.

4 California, Colorado, Connecticut, Delaware, Louisiana, Maine, Massachusetts, New York, Oregon,
Pennsylvania, and Texas in my data period (2012-2020).

15California, Colorado, District of Columbia, Idaho, Maryland, New Mexico, Oklahoma, Pennsylvania,
Rhode Island, Vermont and Washington in my data period (2012-2020).

https: //highways.dot.gov/newsroom /president-biden-usdot-and-usdoe-announce-5-billion-over-five-
years-national-ev-charging.
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ally exclude Tesla-owned stations, since Tesla stations are proprietary assets of the company
and can only be enjoyed by Tesla drivers.

On the manufacturing side, California initiated the ZEV mandate, which requires a
growing proportion of the vehicles sold by large automakers be zero—emission.ﬂ Based on
the total sales volume of fossil fuel vehicles in the previous year, each automaker is required
to reach a credit each year by selling ZEVs, and the number of credits a qualifying clean
vehicle earns depends on the type of ZEV and its battery range@ These credits can be
stored for future use or traded among manufacturers. Tesla is the largest seller of these
credits, because all of its sales are electric which earn credits but consume none. By 2020,
9 other states have opted into the ZEV program, including Connecticut, Maine, Maryland,
Massachusetts, New Jersey, New York, Oregon, Rhode Island and Vermont. In this paper,
the participation in this program is thought of as lowering the marginal costs of production
of EVs (the extent depends on the number of credits an EV earns) but having no direct

impacts on consumers (consumers will be indirectly affected through vehicle prices).

3. Data

My empirical analysis combines multiple data sources for estimation, including information
on vehicle sales, vehicle characteristics, government subsidies on EV purchase and charging
infrastructure, gasoline and electricity prices, EV charging stations, US Primary Interstate
Highways, US household travel patterns and travel routes, and US household demographics.

The US vehicle annual sales data is obtained from IHS Markit (formerly R.L.Polk),
which accurately reflects new car registrations at each state’s Department of Motor Vehicles.
Each model is defined as a make-model-fuel type combinationﬂ and the data contains
sales numbers for passenger vehicle and light duty truck models. The panel includes 49

geographic areas (48 contiguous US states and Washington D.C.), and 9 years (2012-2020),

1"The vast majority of zero-emission vehicles sold are electric.

18For example, BEVs earn more credits than PHEVs.

9The fuel types include BEV, PHEV, hybrid, gasoline, flex-fuel and diesel. For example, the gasoline
version and electric version of Ford Focus are treated as two different models.
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totaling 441 markets. Consumers’ choice sets are assumed to be all models with positive
sales in a market, and the sizes of the choice sets range from 204 to 285, with an average of
252 models available in a market. To improve the granularity of the sales data, I also obtain
the county-year level sales of each EV model for California and New York State which are
published by the California Energy Commission@ and New York State Energy Research and
Development Authority@ respectively. They are used to form a micro-moment which is key
to identifying the preference parameters on DCFC infrastructure (see Section [5)).

Model-year level vehicle characteristics are obtained from the Environmental Protection
Agency (electricity range and fuel economy) and www.teoalida.com/ (MSRP, horsepower,
country of origin, car classification and 5 vehicle size variables). Length, width, height,
wheelbase and curb weight relate to the size of the vehicle and are highly correlated. I use
the first component of the Principal Component Analysis to construct a size PCA variable.
The EV battery pack costs are obtained from Statista@

The geographic datasets (including maps of US Primary Interstates, EV charging station
locations, and household travel patterns) warrant a more detailed discussion. There are 70
Primary Interstate Highways in the Interstate Highway System, whose maps are obtained
from the Wikimedia Commons. The lengths of the Primary Interstates range from 12 miles
to 3,020 miles, so I divide Interstates whose length is greater than 500 miles into segments,
taking the end points of the segments to be intersection points with other Primary Interstates.
Each segment is taken to be around 300 miles, but the length varies depending on where the
intersections points are. This results in 112 Primary Interstate segments, with an average
length of 352 miles.

The exact locations and open dates of all public EV charging stations (level 2 and DCFC)
are accessed from the US Department of Energy Alternative Fuels Data Center. I define a

DCEFC station to be along-highway if the straight-line distance between the station and the

20https:/ /www.energy.ca.gov/files/zev-and-infrastructure-stats-data.

2https: //www.nyserda.ny.gov/All-Programs/chargeny /support-electric /data-on-electric-vehicles-and-
charging-stations.

2Zhttps: //www.statista.com/statistics /883118 /global-lithium-ion-battery-pack-costs//.
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highway segment is at most 3 miles, and the station is called a community station otherwise.
I define a highway segment to be covered by DCFC stations of some standard if there is at
least one along-highway DCFC station of that standard every 100 miles. A county is defined
as covered by DCFC stations of some standard if there is at least one community station
of that standard in the county. These definitions are used on the demand side to model
consumers’ tastes for fast charging.

Household travel patterns are obtained from the Long-Distance Passenger Travel Demand
Modeling Framework (rJourney) (Outwater et al.| (2018))), which is a project sponsored by
the Federal Highway Administration. It estimates a model of demand for long-distance trips
using travel surveys in California, New York, Ohio, and Wisconsin and various data sources,
and uses the model estimates to simulate single-day or multi-day business or leisure trips that
are at least 100 miles for all US households. Existing papers on EV travel usually use the
National Household Travel Survey (NHTS) to simulate travel behaviors (Sinyashin (2021))).
I choose to use rJourney instead, because each NHTS respondent records all of their trips
on a single day, which covers mostly commute trips and shorter trips around where most of
their activities take place. The number of long-distance trips in the dataset is small, and if
a respondent happens to be on a multi-day trip during the recording day, they will only log
their driving pattern on that day, not on days before or after. The rJourney dataset focuses
on long-distance trips and covers both single-day and multi-day trips, and thus is more
suitable for the purpose of this paper. To obtain the travel route of each origin-destination
pair, I use the OpenStreetMap to obtain whether and which Interstate segments are used
for each route.

Panel information on federal and state level EV purchase rebates is collected from the En-
vironmental Protection Agency| and state websites. The state level charging infrastructure
subsidies are collected from state official records. Historical gasoline and electricity prices

are obtained from the US Energy Information Administration. US household demographics

Zhttps://www.fueleconomy.gov /feg /taxevb.shtml.
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including households’ county of residence and annual income, and the fraction of college

graduates in each county are acquired from American Community Survey through IPUMS.

4. Model

The model consists of two parts: a static model of consumer demand and automakers’ pricing
decisions in the spirit of Berry et al. (1995)) (hereafter BLP) and Petrin (2002)), and a dynamic
model of Tesla’s Supercharger investment decision in the spirit of Holmes| (2011)) and Houde
et al.| (2022). In the first part, I use a random-coefficient logit model for consumer demand,
which incorporates consumer preferences for fast charging networks in an innovative way.
Consumers value fast charging in local neighborhoods and along highway corridors during
travel, and the availability and convenience of both types of charging depend on consumers’
home locations. Car manufacturers engage in static Bertrand competition and set national
prices optimally. In the second part, Tesla has perfect foresight and faces a constrained dy-
namic optimization problem to choose which locations to cover with Supercharging stations
each year. Section lays out the demand model, Section discusses firms’ competition

in prices, and finally Section presents Tesla’s investment model.

4.1 Consumer demand

In each state and year, households choose from one of the following: buying a battery EV,
a plug-in hybrid, a non-electric vehicle, or not buying a new vehicleY| The choice set a
consumer faces is assumed to be all vehicle models with positive sales in the state plus the
outside option of not buying a new vehicle. The indirect utility consumer i obtains from

product j in state s in year ¢ (I shall call it market st) is

Uijst = i log(pjr — subsidy ) + 28 + fijst(Ni; 0) + Ejst + ity (1)

24This could include buying a used vehicle, sticking to their existing vehicle, or relying solely on public
transportation.
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where pj; is the national level manufacturer’s suggested retail price and subsidy;, is the sum
of all federal and state EV purchase tax credits an EV can enjoy; p;;—subsidy, is the effective
price consumers pay for product j ﬁ zjs 1s a vector of vehicle characteristics (which might
be specific to market st)ﬂ N, is the charging network at time ¢ and f;;s(N;; 0) captures
consumers’ preferences for a reliable DCFC network close to where they live and along
highway corridors, described in details below; ;g is the unobserved product characteristic
in market st; and €, is an unobserved individual taste for the product that follows i.i.d.
Type I Extreme Value distribution. «; is an individual-specific price sensitivity coefficient

that depends on the consumer’s annual household income y;, and is parametrized as

a; = o + aq log(y;). (2)

The outside option j = 0 is normalized to have utility w0 = €08t

Consumers are aware of the current DCFC network and value being able to charge when
they buy a BEV with fast charging capacity. Let ¢ be the county of residence of consumer
i in state s (county ¢ is a county in state s), and the preferece for the charging network

fijst(Ng; 0) is written as
fijst(N; ) = O1local coverage;,, + Oxtravel scorejes, (3)

where local coverage;,, takes the value of one if there is at least one DCFC station that is

compatible with j’s charging standard and takes the value of zero if product j is not a BEV,

251 do not observe the out-the-door prices consumers actually pay for their new vehicle, which might
include taxes, delivery fees less manufacturer’s or dealer’s discounts. Nor do I observe whether eligible
consumers actually apply for the tax rebates or not. This is a common data limitation in papers studying
the EV market (Armitage and Pinter| (2021) and |Sinyashin| (2021))).

%xjst includes a constant, battery range of BEV, battery range of PHEV, year, the number of level 2
charging stations per household in the state, the energy cost of driving 100 miles (which depends on gaso-
line/electricity prices and vehicle efficiencies), size, horsepower, all-wheel drive, origin dummies (Europe,
Asia or US), body type dummies (car, SUV, pickup or van), propulsion system dummies (BEV, PHEV or
non-EV), the interaction terms between the propulsion system dummies and year, the interaction terms
between propulsion system dummies and the fraction of college graduates in the state, and three-way in-
teractions between the propulsion system dummies, year, and college graduate fractions.
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does not have fast charging capability, or there are no DCFC stations of j’s standard in county
c. travel scorejy is a continuous variable between zero and one that captures how DCFC-
accessible the Primary Interstate Highway System is around county c. It is the fraction of
trips an average household in county c can travel using the Interstate DCFC network and
their BEV j (if product j is not a BEV or is not DCFC compatible, travel score;; = 0).

Formally, it is written as

travel scorejq = Z we(d) - travelable;.;(d). (4)
d

An average household in a county makes long-distance auto trips to various destination
counties indexed by d. The weighting variable w.(d) is the ratio of the annual number of
trips an average household in county c¢ takes to destination d over the total number of long-
distance trips the household takes. travelable;.(d) is a dummy variable and takes the value
of one if (a) j is a BEV with fast charging, and (b) all highway segments traveled along the
route between counties ¢ and d are covered by DCFC stations of j’s standard@

The two terms in Equation (3)) reflect the two types of occasions where fast charging might
be needed - short trips around where consumers live (for example commute trips or trips to
restaurants nearby), and long-distance trips that span one or more days (for example road
trips or auto business trips). This formulation is arguably more realistic and less restrictive
than some previous work, mainly in two ways. First, it allows for the fact that consumers do
not just drive around where they live; they take longer trips and take that into account when
they buy new cars. Meanwhile, enabling long-distance trips with EVs has been emphasized
by policymakers to achieve emissions reduction. It is important that charging needs during
long-distance trips and the charging network along highways are incorporated. Second, the
preference for the highway charging network is location-specific and depends on the home

county of the consumer. A household living in New York almost for sure care more about

2"The highway segments and whether they are covered by DCFC stations are defined in Section
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whether they can charge on Interstate 95 than on Interstate 5,@ and the contrary is true
for most Los Angeles households. The idiosyncratic charging needs due to different travel
patterns are allowed for using the trip information in the rJourney dataset, and Equations
and help to map charging companies’ location coverage decisions to how consumers
feel about the network heterogeneously in a structural yet convenient way.

The market share of model j in state s in year t is calculated as

_/ exp(q; log(pje — subsidy;,) + zjstB + fijst(0) + §jst) dG s (ys, i) (5)
st\Yi) Ci )y

Sjst = N
7! 1+ > exp(a; log(py — subsidy,y,) + 2168 + fust(0) + &ist)
7

where G (y;, ¢;) is the joint distributions of consumers’ annual household income and resi-

dence county in state s and year .

4.2 Pricing

I assume the observed prices are the equilibrium outcome of a Bertrand Nash game where
multiproduct car manufacturers set static national prices for each product they sell in a
period. The marginal cost is assumed to be constant regardless of quantity, and across states,
which is motivated from the observation that production usually happens in a centralized
setting.@

The log marginal cost of product j in year ¢ is parametrized as
log(MCj;) = wiyy +v**"ZEV credits;, + wjy, (6)

where wj; is a vector of exogenous vehicle Characteristicsm ZEV creditsj; is the number of

28Interstate 95 is the main northsouth Interstate Highway on the East Coast going through Boston,
New York City, Washington DC, and Miami. Interstate 5 is the main north-south Interstate Highway on
the West Coast going through Los Angeles, Sacramento, Portland, and Seatle.

29For example, all Tesla vehicles sold in North America are produced in their factory in Fremont, Cali-
fornia.

30wjt includes a constant, year, imputed battery costs, size, horsepower, all-wheel drive, MPGe, origin
dummies (Europe, Asia or US), body type dummies (car, SUV, pickup or van), and propulsion system
dummies (BEV, PHEV or non-EV).
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ZEV credits BEV j can earn in the ZEV states in year ¢ (if product j is not a BEV or does
not earn any credits, the value is zero)ﬂ and wj; is the unobserved cost shifter.

The profit an automaker f makes from vehicle sales in year ¢ is

Tp= Y, > Ma(pj — MCjy)sjq, (7)

Jj€ITft s

where Jy, is the set of products firm f sells in year ¢ and My, is the number of households

living in state s in year t. The first order conditions with respective to prices are given by

or 0s
It Z Msjse + Z Z Mg (pn — MCl) bt (8)

apjt ledspe s apjt

4.3 Tesla’s Supercharger investment

Setup. I formulate Tesla’s Supercharger investment decision as whether and when to
cover the counties and highway segments. Covering a county means the county has at least
one in-city Supercharging station; Covering a highway segment, which is a predetermined
part on a primary Interstate, is to have Tesla Supercharging stations at least every 100
miles along the Segmentﬂ This formulation helps to translate Tesla’s decision making from
placing individual stations to covering locations, and the reason for doing this is multifold.

The main reason is because the goal of the paper revolves around the trade-offs between
building stations on a highway versus building them in communities, or whether to build
them in county A or county B. Understanding whether to build them next to restaurants or

offices is not the goal of this paper. Second, there will be numerous unobserved factors at

31ZEV credits can be traded freely for cash among automakers to comply with the ZEV mandate. The
effective cost of a BEV in one of the ZEV states can be thought of as lowered by the market price of the
credits it earns. For institutional detals on the ZEV mandate, see Section [2:3] Note also that the ZEV
credits apply only to the ZEV states and hence vary by state, but the variable ZEV credits;; does not vary
by state and is the (fixed) credit amount in ZEV states. This is because the marginal cost is modeled at
the national level. Therefore, v*¢ can be thought of as the monetary value of the ZEV credits, discounted
by the fact that not all sales happen in ZEV states.

32For details, refer to Section
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the coordinate level affecting Tesla’s decision making, which can be alleviated if I zoom out
to a less granular levelg Third, individual stations can be placed almost anywhere in the
US (leaving aside some feasibility constraints), and hence finding the geographic coordinates
of optimal station locations is infinite-dimensional and intractable. On the other hand, there
are around 3,000 counties and 112 primary interstate segments, and the decision on which
locations to cover is now finite-dimensional and more feasible. Fourth, this location coverage
formulation is also consistent with the demand model laid out in Section (4.1l

Some notations regarding Tesla’s charging network are introduced next. Let C be the set
of possible counties in which to build Superchargers, and H be the set of highway segments.
Let £ = CUH be the set of locations Tesla can cover with Supercharging stations, and |L|
be the cardinality of set £, and index a location in £ by [. Denote the charging network at
year t by Ny, which is a |£|-vector of zeros and ones such that N;; = 1 if and only if location
[ is covered by year t. Stack N; for all years into N = {N,;}°, for notational convenience.
Denote the expansion plan at year ¢ by a;, which is also a |£|-vector of zeros and ones such

that ay = 1 if and only if location [ is covered in year t. Stack all a;’s to form a = {a;}2,.

Timeline.  Tesla is assumed to have perfect foresight, which is a common assumption
in the literature (Holmes| (2011) and Houde et al.| (2022)). The timing of the model is as
follows:

(a) Before the start of year 0, no locations are covered by Superchargers yet, i.e. N;_; =0
for all . Tesla knows everything about the EV market that might affect its profits (including
all the demand errors &j’s, marginal cost errors w;;’s, and investment cost errors n;’s), and
decides on an optimal investment plan a.

(b) At the begining of each period ¢, the existing network is N;_;. Investment a; is made
according to plan a. All investment costs are incurred and locations in plan a; are covered.

The network is now N, = N;_1 + a;.

33For example, a specific location may not be suitable for building a parking lot, but a county should
almost for sure have places for parking lots.
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(c¢) Car manufacturers (including Tesla) observe all information on demand and marginal
cost in year t (including &;,’s and wj;’s), and engage in static Bertrand price competition.
Equilibrium car prices p;;’s are set.

(d) Consumers observe the current Tesla Supercharging network N; and equilibrium car
prices, and make car purchase decisions. Profits are earned by car manufacturers.

(e) Period t ends and period t + 1 starts from step (b).

Investment costs. The costs of covering a location with Superchargers include the
upfront costs (costs of hardware and materials, installation and construction costs, costs
of permitting and labor costs) and operating and maintenance costs (site lease, site and
equipment maintenance and labor costs). Since closures of stations are hardly observed in
reality, I assume all opened stations will not be closed, and all covered locations will not
be uncovered. What matters to Tesla is the present discounted value (PDV) of all costs
associated with covering a location.

The (PDV of) cost of covering a county c is parametrized as

coste(A) = Ay + Ao M, + rent,. + 1., (9)

where M, is the number of households in county ¢ and rent. is the PDV of rent payments
that depends on the commercial per square foot rent and the imputed area of the station@
and 7. is an unobserved cost error. A; is the average cost of covering a county including
all upfront and future components but rents. The Ay M, term captures the fact that Tesla
might build larger or more stations for counties with a larger population. I do not directly
include the number of stations or the number of chargers in the cost equation because those
are choices made by Tesla and might be correlated with other unobserved factors that affect

costs and thus introduce omitted variable biasﬂ The population of the county is unlikely to

34Each charger is assumed to take 160 sqft (the size of a standard parking space) and each station is
assumed to need an additional 400 sqft for equipment. See https://techcrunch.com/2013/07/26/inside-
teslas-supercharger-partner-program-the-costs-and-commitments-of-electrifying-road-transport /.

35For example, if the cost is lower in some county, Tesla might build larger or more stations in that
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change with how accessible Tesla Supercharging is, and thus can be treated as exogenous.

The (PDV of) cost of covering a highway segment h is parametrized as

costy(X) = As#stations), + \g#trips, + renty, + 1y, (10)

where #stations, is the number of Tesla Supercharging stations on segment h, #trips,, is
the total number of trips that go through segment h each year, rent;, is the PDV of rent
payments calculated in a similar way as rent., and 7, is an unobserved cost error for segment
h. Unlike Equation @, Equation directly includes the number of stations as a variable,
and this is because Tesla usually places a station every 50 miles on the highway, and the
number of stations on a segment depends almost solely on the length of the segment, which
is exogenous. Bringing in the number of stations to the cost equation of segments should
not cause bias to estimation. However, the size of each station (i.e. the number of chargers
in each station) is an endogenous choice of Tesla that depends on their expectation on how
busy the highway is and how often the chargers will be utilized. Hence, instead of including
the number of chargers in the equation, I use the number of trips on the segments to proxy
for how busy the segments are. The latter depends on the travel pattern of US households
and the layout of the US highway system, and is unlikely to depend on Tesla’s charging
network.

In the cost specifications, the labor costs are not directly included in Equations @ and
(10), and are implicitly included as part of the fixed costs A\; and A3, which means they
are more or less constant across locations (up to some unobserved errors) or at least not
representable by the prevailing local wage rates. This is because building and maintaining
Supercharging stations could be a more centralized process that requires some expertise,
and a same team of people could be in charge of the process for all locations. Moreover,
the stations require very little labor input for daily operations, unlike a Walmart store or

an Amazon warehouse, which hires lots of local workers. Hence, I do not assume the labor

county. This could bias the marginal cost of a station or the marginal cost of a charger towards zero.
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costs associated with the stations are proportional to the local wage rates.

Tesla’s value function. Tesla’s value function consists of two parts: flow profits from
car sales and investment costs on location coverage. I do not include profits or losses from
Supercharging activities in Tesla’s value function for two reasons. On the one hand, I do
not have detailed information on charger usage or prices; on the other hand, they do not
seem to be Tesla’s first-order concerns - Tesla models sold before 2017 were offered lifetime
free charging at any Supercharging stations. If Tesla were to optimize profits from charg-
ing activities, any price below the marginal cost (including but not limited to the cost of
electricity) could not be optimal.

The value function of Tesla can be written as

[I(a) = ipt (Wt(Nt) — Z ay - costl>, (11)

t=0

where m;(V;) is Tesla’s equilibrium profit from car sales in year ¢ when the Supercharger
network is NV, as defined in Equation . Here, the firm index f = Tesla is dropped for
notational simplicity and the argument N; is added to highlight that the profit depends
on the endogenous charging network. As N, changes, I allow the prices of BEVs with fast
charging to adjust, and the new equilibrium prices are calculated through the pricing FOCs
(Equation (8)). The equilibrium profit 7;(V;) is calculated under the new equilibrium prices.
The PDV of all upfront and future cost components, cost;, is as defined in Equations @D
and for counties and highway segments respectively.

There are several complications that are ignored in this model. For example, Tesla might
be financially constrainted and cannot borrow freely. This might impede Tesla from covering
as many locations as they want each year. Alternatively, there might exist uncertainties on
future demand or policy support, and Tesla might act cautiously and expand at the a slower
rate than they otherwise would do. On the other hand, Tesla might take preemptive moves to

secure a leading position in this market, or Tesla might want to build trust among potential
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buyers, in which cases Tesla would have incentives to expand fast.

This paper is most interested in understanding the trade-offs associated with the choices
to cover different locations (for example whether to cover counties first or highways first,
and which counties/highway segments to cover first). To that end, and to minimize the
potential biases caused by the real world complications mentioned above, Tesla’s problem
will be conditional on the number of locations covered each year (similar to Holmes (2011))
and Houde et al.| (2022))). Tesla’s Supercharger investment problem is characterized as the

outcome of a contrained dynamic optimization problem with perfect foresight:

max II(a) (12)

subject to Z ap = Z ay, for all ¢,
l !

where II(a) is as defined in Equation , and a° is the observed and optimal investment

plan.

5. Identification and estimation of the demand and pricing model

The joint estimation procedure of the demand and pricing model is similar to [Petrin| (2002]).
The parameters are estimated using the method of efficient generalized method of moments
(GMM) which consists of three components. The first component is the orthogonality con-
ditions between unobserved product characteristics §;5’s and a vector of instruments. The
second component is the orthogonality conditions between the unobserved cost disturbances
w;r’s and another vector of instruments. The final component is a micro-moment that
matches the model predicted and observed county level penetration of BEV models with
fast charging in California and New York State. The goal of the micro-moment is to help
identify the non-linear parameters on consumer preferences for fast charging networks (i.e.
01 and 65). The rest of this section describes those three components in detail.

The GMM algorithm is done 3 times, the first time using the weighting matrix of the 2-
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Stage Least-Squares regression, and the second and third times using the optimal weighting
matrix calculated from the previous step. The results are very similar for the 2-step and
3-step GMM, implying a quick convergence. All the results presented in Section [7] will be
from the 2-step GMM. The standard errors are calculated following the GMM standard error

formula and Nevo (2000).

5.1 Demand side instruments

I assume the product characteristics are exogenous except for the log effective price log(p;; —
subsidy;,) and the 3 variables related to EV charging (state level number of level 2 charg-
ing stations per household, DCFC local coverage and DCFC travel score). The moment

conditions are

E[Zjs&jst) = 0, (13)

where Zj5 contain the exogenous product characteristics and instruments for endogenous
prices and charging variable. To select the instruments, I first propose a large candidate
set of instruments, and then run first stage linear regressions of the endogenous variables
on the exogenous product characteristics and proposed instruments for a diagnosis of weak
instruments. Finally, I keep only the statistically and economically significant instruments
in the moment conditions. The selected instruments come from 5 big categories, 3 targeting
the effective prices and 2 targeting charging variables.

The instruments that help mainly to explain the effective prices are (a) subsidies on EV
purchase, (b) cost shifters, and (c) BLP instruments. The federal tax credits on EV purchase
and the average state rebate for EVE@ are assumed to be exogenous and in the first category.
The time trends in preferences for BEVs and PHEVs are already controlled for, and the
&jst's should only contain the temporary deviations from the time trend. On the other hand,

government rebate programs require long-term planning, and the arrival time of the programs

36Since the MSRPs are set at the national level, not at the state level, a valid instrument for state
rebates has to be constant across states. Hence, the average rebate across states is used, not the actual
state-level rebate the consumers face.

27



are likely to be random and uncorrelated with temporary demand shocks. The exogeneity
of government EV subsidies is also a usual assumption maintained in the literature. The
exogenous cost shifters include the number of ZEV credits a BEV can earn in a ZEV state,
and the imputed battery costs of EVs. The former is a function of the battery range, and the
latter is a function of the unit price of lithium ion battery packs and the battery capacity.
All of them are heavily reliant on the battery technology and are assumed to be orthogonal
to the demand errors. The BLP instruments describe the intensity of competition among
manufacturers in the characteristic space. Since the characteristics themselves are assumed
to be exogenous, any functions of them are exogenous too. 7 instruments are of this kind
(after the selection of strong instruments), which contain information on the battery ranges,
sizes, and fuel efficiencies of products produced by the same firm or other firms.

The instruments that are most relevant for the availability of charging infrastructure are
(d) government subsidies and (e) the attractiveness of EVs. Whether the state subsidizes
charging equipment, whether the state subsidizes DCFC charging equipment, and whether
the DCFC subsidy highlights highway locations are assumed to be uncorrelated with the
demand errors and included, for the same argument as the exogeneity of government EV
purchase rebates. For the attractiveness of EVs, there is a slight distinction between in-
struments for level 2 charging availability and those for DC fast charging. The former is
compatible across BEV charging standards, and can be used for both BEVs and PHEVs.
Hence, the overall popularity of EVs should matter to level 2 charging deployment. On the
other hand, DC fast charging is only available on some BEVs and is incompatible across
standards. As a result, only the attractiveness of BEVs of that standard should directly
matter for the profitability of DCFC stations (the attractiveness of other EV models might
matter indirectly for competitive reasons). The included instruments for level 2 charging are
the EV dummy interacted with whether the state has ZEV mandates, and with the average
energy cost for EVs relative to all vehicles repsectively. The included instruments for DCFC

availability are the BEV with DCFC capability dummy interacted with whether the state
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has ZEV mandates, with the average energy cost for BEVs of the same standard relative to

all vehicles, and with the number of BEV models of the same standard sold repsectively.

5.2 Cost side instruments

The marginal costs are calculated by solving the pricing first order conditions in Equation
. The calculation is slightly more involved than in BLP, because the prices are set at the
national level, and each equation contains terms from all 49 markets in each year. After the
marginal costs are backed out (for given non-linear parameters (ag, aq,b6;,6s)), the GMM

criterion runction includes the orthogonality moments

E[Vwii] = 0, (14)

where Vj; are instruments and w;; are unobserved cost errors as defined in Equation @
Since the cost side variables wj; are assumed to be exogenous, they constitute the first part
of Vj;. The remaining part of V}; are some demand shifters uncorrelated with the cost errors,
including the average gas to electricity price ratio interacted with the BEV, PHEV and non-
EV dummies respectively, the average local coverage, and the average travel scoreﬂ The
placement of charging stations is irreversible, as closures of stations are hardly observed in
the data, and as a result, the decision to build stations should take into account long-term
variables, not just the single-year profitability. The unobserved cost errors are short-term
errors, as the time trends are already controlled for. Hence, the average local coverage and

average travel score should be valid instruments that are uncorrelated with the cost errors.

37Since the marginal cost equation is at the national level while the original forms of the demand
shifters are at the state level, the averages of those demand shifters across states are taken to form cost
side instruments.
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5.3 Identifying the charging preference parameters and the micro-

moment

First, the case without any micro-moment is discussed. The non-linear parameters on DCFC
charging preferences (61,0) are identified through the market-level variations (i.e. across
states and over time) in local coverage and travel score. A rich set of controls are included
in the demand specification to address market-level differences in EV preferences that are
not due to DCFC charging availability. Through those controls, we allow for distinct time
trend for buying vehicles of different fuel types, differentiating preferences across states for
vehicles of different fuel types explainable by the fraction of college graduates in the state,
and the state-time varying tastes for vehicles of different fuel types. For example, if well
educated consumers are first adopters of green cars and other consumers catch up over time,
this can be explained by the coefficients in those controls and will be not wrongly attributed
to development of DCFC infrastructure through the correlation (not causation) between
DCFC development and BEV market shares. For the complete list of demand controls, refer
to footnote 26l

If the micro-moment were not added, (61, 6,) would be solely identified from the relation-
ship between state-year level DCFC availabilities and state-year level consumers’ responses
(after properly controlling for other covariates), whereas the valuation information contained
in the county-year level relationships cannot be utilized. Since the local coverage and travel
score variables are at the county level already and the model is capable of predicting county
level market shares, what is needed is the observed county-level market shares, which can be
matched with the model predicted ones in order to better identify (6;,6,). To that end, the
county-level market shares of EV models are collected for California and New York State,
and are matched with model predicted market shares to form a micro-moment in the GMM
criterion function.

More specifically, the micro-moment matches the observed and model predicted market
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penetration (i.e. sum of market shares from 2012-2020) of each BEV model with fast charging
in each county.@ Let peng; and pen(a,f) be the observed and model predicted market
penetration of model j (which is a BEV with fast charging) respectively. Let g.; = (pen?; —
pen,;(,0))® be the squared difference between the two values, which is always non-negative

and approaches zero when («, §) approaches its true value. Let g be the average value of g.;,

and the micro-moment can be written as
wmm . gQ’ (15)
where W™™ is the weighting matrix (in this case, a scalar) of the micro-momentﬂ

6. Identification and estimation of Tesla’s Supercharger invest-

ment decision

The parameters on the investment side that remain to be identified and estimated are \ =
(M, A2, A3, A1), as defined in Equations (9)) and (L0). I follow Holmes| (2011)) and [Houde et al.
(2022), and take a revealed preference approach that any feasible alternative investment plan
cannot be more profitable than the observed plan a°. This assumption gives rise to inequality
constraints and leads to a moment inequality estimator for A. This approach circumvents
solving the infinite horizon dynamic programming problem of location choices, which is
infinite dimensional (even with a finite horizon problem, the dimensionality is very high

given the large set of possible locations).

38The reason why I do not match the market shares in individual years is because I observe there are
some discrepancies between the state-year level sales from the IHS Markit datset and the county-year sales
datasets, and the discrepancies are significantly reduced when sums are taken across years. This is likely
because they take different methods in attributing registration records to years

391n the first-step GMM, W™™ = 1. In later steps, W™™ is updated to be the inverse of the estimated
variance of g.; from the previous step.
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6.1 Forming the moment inequalities

To form those inequalities, I will only consider plans that are minimally perturbed from
the observed plan, i.e. where the coverage years of two locations are swapped. The benefit
is twofold. First, I cannot fully control for the financial constraints and other dynamic
considerations Tesla faces (Section has a discussion on this). Small deviations that
hold fixed the number of locations covered each year are more likely to be feasible and
within Tesla’s consideration. Hence, they are more robust to the real world complications.
Second, with such bilateral swaps, only profit streams between the two coverage years are
affected, avoiding from making assumptions on the distant future profit streams and reducing
computation burden.

Denote the two locations being swapped by [ and I’, and the two coverage years by ¢t and
t' where t < t'. Denote by ' the alternative plan where the coverage year of location I
(I') becomes t' (t) and everything else is the same as a°. Let N, (a) be the Supercharging

network in year ¢ under plan a. The revealed preference approach states
II(a \) — II(a""; X) > 0, (16)

where II(-; \) is defined in Equation . Plugging in the functional form of the value

function to the inequality, the constraint can now be written as

t'—1

M(a%A) — (a5 0) = p7 [WT (N:(a%)) — - (NT(al’l/))}

—(p' = p") [costl()\) - costl/()\)] >0 (17)

There are two types of locations, counties and highway segments, and as a result, there
are four types of bilateral swaps - switching two counties, switching two segments, switching
an early-covered county and a late-covered segment, and switching an early-covered segment

and a late-covered county. The identification argument is discussed separately for each type
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of swaps below.

Switch two counties. The inequality is
YO — N X5¢ 4 ¢ >0, (18)

where Y is the discounted difference in profit flows from car sales net of rents between
the actual and alternative plan, where the profits from car sales are calculated using the

estimates from the demand and pricing model:

ved =37 p [ (Ne(a?)) = e (Ne(a)) | = (o = ) - (remt, —vento), — (19)

T=t

Xg’cl is the discounted difference in number of households between county ¢ and ¢:
X3< = (o' = p") - (Mo — M), (20)

and €>¢ captures the unobserved components in the value difference, due to unobserved
investment cost errors 7. and 7., using the estimated demand parameters rather than the
actual ones, and any model misspecification or other factors not included the model.
Inequation implies how A, can be partially identified. Ignore the error term e“¢ for
now. Y*¢ and XQC’C/ are directly calculable from the demand model and the data, and the
possible ranges for Ay can be inferred. For illustration, consider the case where county c is
smaller in size than county . The actual plan would have a lower investment cost than
the swapped one if larger counties are more costly to cover (which is the case given the
estimated range of Ay in Section , and the profit flows and rent costs might be different
too. Suppose the PDV of profit flows net of rent costs is lower for the actual plan as well.
The fact that the alternative plan is not chosen means that the higher investment cost in the
alternative plan cannot be fully compensated for with the higher profits net of rent costs,

which leads to a lower bound for A\;. Mathematically, X;C’ is negative in this case, and the
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c,c!

inequality implies Ay > Yw,. If Yo is negative, % is a meaningful lower bound for Ag,

2 2
!
. . c,c . . . .
and the more positive —; - is, the more information the revealed preference contains, and

c,c

2

the tighter the lower bound is.

The case where county c¢ is larger in size than county ¢ is similar. The actual plan would
have a higher investment cost than the swapped one (if larger counties are more costly to
cover). Suppose the PDV of profit flows net of rent costs is higher for the actual plan as well.
The fact that the alternative plan is not chosen means that the lower investment cost in the
alternative plan cannot fully compensate for the lower profits net of rent costs, which leads
to an upper bound for \,. Mathematically, XQC’CI is positive in this case, and the inequality

implies Ay < ?’C,. If Yo is positive, ;/T is a meaningful upper bound for Ay, and the

c,c

2 2

smaller % is, the more information the revealed preference contains, and the tighter the

c,c
2

upper bound is.

The arguments above omit the error term €. If the error term is non-zero, focusing
on single inequalities could make the identified range for Ay unrealistically small, or even
non-existent. Consider the first case where XQC’C/ is negative. The lower bound for A\, should
be Ay > % If the realized € is very negative but is ignored, the lower bound will be

mistakenly large. Similarly, in the second case where Xg’cl is positive, the true upper bound

for Ay is Ay < YCX—J“,, but if the realized ¢>¢ is very positive but is ignored, the upper

c,c
2

bound will be mistakenly small. A solution to this is to take averages across inequalities to
(hopefully) make the average of the errors vanish [
Formally, let Z%¢ be a vector of non-negative instruments that are uncorrelated with

€. Then, Ay can be estimated using the following moment inequality conditions:

E[Z5¢ - (Yo — MX5)| + E[Z°¢ - ] > 0 (21)

401f the ¢-¢"’s were independent across swaps, then the average of the errors would approach zero as
the number of swaps increases. However, two distinct swaps might involve the same county, breaking the
independence assumption. This dependence will be taken care of when calculating the standard errors by
Bootstrap.
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The second term E[Z4¢ - €>¢] = 0 under the assumption, and hence the inequality becomes
E[Z%¢ - Y] = Ay - E[Z5 - X5 > 0 (22)
Switch two segments. The inequality is
YW NG XPM N X >, (23)

where Y™" is the discounted difference in profit flows from car sales net of rents between

the actual and alternative plan:

t'—1

yhh = Z p’ |:7/i—7' (NT(CLO)) — Ty (NT(ah’h/))} - (pt - pt/) ’ (renth - renth’)v (24)

T=t

X ?}f " ig the discounted difference in the number of Supercharging stations between segment
h and h':

X?’j’h/ = (p' — p") - (4#stations, — #stations,,), (25)

X ff " is the discounted difference in the annual number of trips between segment h and h':

Xilvh/ — (pt _ pt/) . (#tripsh — #tripsh/). (26)

The identification argument for A3 and A4 is similar to that for \; in the swap-2-counties
case, except that there are now two parameters to identify, and the identified set should
be a region in the space of A3 and )4, instead of a 1-dimensional interval range for a single
parameter.

Let Z™" be a vector of non-negative instruments. The moment inequality conditions are

E[Z" - YMY] = Xy E[ZMY - X5 = A E[ZM - XpM] > 0. (27)
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Switch a county and a segment. The remaining two cases where an early-covered

county and a late-covered segment, and an early-covered segment and a late-covered county

are swapped are very similar. The details are left for

Unifying the four types. A unifying way to write the moment inequalities for all four
types of swaps is presented below.
Let [ and !’ be the indices for the two locations swapped in the alternative plan. Let

ll

Z' be a vector of non-negative instruments that are uncorrelated with €. The moment

inequality conditions write

4
E[Z YY) = 3" A B2 XM >0, (28)
=1
where
t'—1
Y = ZpT [7@ (N-(a®)) — 7, (Nf(a”'))} — (pt = p*) - (rent; — renty),
T=t1

(Here, let M; = 0 for segments, and #stations, = #trips; = 0 for counties for the sake of

rigor.)

6.2 Instruments

The county size M;, number of stations on a segment #stations; (which is almost a step
function of segment length), and number of annual trips going through the segment #trips;

. ! . . . . .
are assumed to be uncorrelated with €. I consider the groupings instruments similar to
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Holmes (2011) and Houde et al.| (2022)). A naive version of the grouping instrument would
take the value of 1 if a swap ([,1') belongs to a group, and 0 otherwise. To make the
magnitudes across swaps more comparable, the naive instrument will be multiplied by p~¢,
so that the values are rescaled to the present value in the year when the swap begins. That
is, the grouping instrument takes the value of p=* (where t is the coverage year of location
l) if a swap ([,1') belongs to a group, and 0 otherwise. The groups are defined based on the
swap type, and the values of M;, #stations; and #trips;, and are defined in Table [2] There
are 50 groups, referred to as basic instruments hereafter.

In addition, Xf’l/ is a function of the exogenous variables M, #stations and #trips,
and hence are uncorrelated with €' as well. Any functions of Xil’ll are valid instruments
too. Besides the basic instruments, I also include Order-1 instruments, where the basic
instruments are interacted with the non-negative Xilf, defined as Xilf = XM Irl}li,n{Xf’l/}.
For each basic instrument (i.e. each group), there are 4 Order-1 instruments, corresponding
toi=1,2,3,4. Order-2 instruments are the interactions between the basic instruments and
Xilf . lei/ For each basic instrument, there are 10 Order-2 instruments. There are in total
50 basic instruments, 200 Order-1 instruments, and 500 Order-2 instruments. The results
with only the basic instruments, and the basic instruments plus higher order instruments
are all presented in Section [7.2] With Order-1 and Order-2 instruments, the identified set of

A can be narrowed down.

6.3 Characterizing the identified set of A

The identified set of A is such that all (the sample analog of ) the moment inequality conditions

are satisfied. The identified set A can be written as
4

A={rer: (X2 YA A X =0, foran k) (20)

L, i=1 @,
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Table 2: Definition of Groups

Panel A: Location class definitions

Define county classes 11, 12, 13 and 14 by M, being in

County class I
Y (0, 10°), [10%,5 x 10°), [5 x 107, 10°) or [10°, 00).

Define county classes 111, 112, 113 and 114 by the quartiles of M.,

County class 11 ) ] i ] :
with II1 being the bottom quartile and 14 being the top quartile.

Define segment classes 1111, 1112, 1113 and 1114 by #stations,;, being in

Segment class I11
& {1,2,3}, {4, {5,6) or {7,8,9,10,11,12}.

Define segment classes IV1, IV2, IV3 and IV4 by the quartiles of #trips,,,

Segment class IV ) ) ] i )
with IV1 being the bottom quartile and IV4 being the top quartile.

Panel B: Swap grouping definitions

Swap group category Group counts Description

Swap Type 1 - Switch two counties:
County size increasing 3 ¢ in class Ii, ¢ in class I( + 1) for i = 1,2, 3
County size decreasing 3 ¢ in class I(i + 1), ¢ in class Ii for i = 1,2, 3

Swap Type 2 - Switch two segments:

Segment stations increasing 3 h in class 1114, h in class IT11(i + 1) for ¢ = 1,2,3
h in class I1I(i + 1), h in class 11Ti for ¢ = 1,2,3
h in class IVi, h in class IV(i + 1) for i = 1,2, 3
h in class IV(i + 1), h in class IVi for i = 1,2, 3

Segment stations decreasing

Segment trips increasing

W w W

Segment trips decreasing

Swap Type 3 - Switch early-covered county and late-covered segment:

Based on county size 4 cin class Iz fori =1,2,3,4

Based on segment stations 4 h in class 1117 for i = 1,2, 3,4

Based on segment trips 4 h in class IVi for 1 = 1,2,3,4

Based on year difference 4 t—t=1t—t=2t—t=3, ort—t>4

Swap Type 4 - Switch early-covered segment and late-covered county:

Based on county size 4 ¢ in class IIi for 1 = 1,2,3,4

Based on segment stations 4 h in class 1117 for i = 1,2, 3,4

Based on segment trips 4 h in class IVi for 1 = 1,2,3,4

Based on year difference 4 t—t=1t—-t=2t—-t=3, ort—t>4
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Note that all the constraints are linear inequalities of X\. Hence, the identified set has some
good properties. If the identified set is non-empty (which is the case in this paper), it will be
a convex and connected 4-dimensional polygon, and fully characterized by its vertices. These
vertices are the extreme points in the identified set. The identified set is the convex hull of
these vertices. That is, a point is in the identified set if and only if it can be represented
by a linear combination of the vertices. In Section [7.2] the set of estimated investment cost
parameters will be represented by the vertices of the set. If one is interested in knowing the
range of a single parameter J);, it will be the interval between the minimum and maximum

values of the i-th coordinates of the vertices.

7. Estimation results

7.1 Demand and MC parameters

The demand and MC parameters are jointly estimated using the GMM framework with the
demand side moment conditions (Equation (13])), the MC side moment conditions (Equa-
tion (14)) and the micromoment (Equation (15)). Table [3] shows the estimated demand
parameters, and Table [4] presents the estimated MC parameters.

All the coefficients on vehicle characteristics in the demand model come out signifi-
cant, and have the expected signs: all else equal, consumers prefer vehicles with a smaller
fuel /electricity cost, a higher horsepower, a larger size, and all-wheel drive. American ve-
hicles are preferred to European ones or Asian ones, and Asian vehicles are slightly more
preferred to European ones. Cars and SUVs are more preferred to pickup trucks and pas-
senger vans. Consumers value EVs with a larger battery range, more so for BEVs than for
PHEVs, and consumers are more likely to buy EVs if the level 2 charging infrastructure
in the state is more developed. The trends parameters convey confirmative messages too.
The overall preference for buying a new vehicle declines over year, but increases for EVs. If

2012 is treated as the starting year, consumers first prefer conventional vehicles over EVs,
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Table 3: Demand Parameter Estimates

Coefficients on log effective price
Const. (ap)

Log household annual income (a;)

Estimate Standard error

-6.643
0.241

Coefficien